[1] |
Ittel S D, Johnson L K, Brookhart M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev., 2000, 100 (4): 1169–1204. doi: 10.1021/cr9804644
|
[2] |
Natta G, Pino P, Corradini P, et al. Crystalline high polymers of α-olefins. J. Am. Chem. Soc., 1955, 77 (6): 1708–1710. doi: 10.1021/ja01611a109
|
[3] |
Ziegler K, Holzkamp E, Breil H, et al. Polymerisation von Äthylen und anderen Olefinen. Angew. Chem., 1955, 67 (16): 426. doi: 10.1002/ange.19550671610
|
[4] |
Galli P, Vecellio G. Technology: driving force behind innovation and growth of polyolefins. Prog. Polym. Sci., 2001, 26 (8): 1287–1336. doi: 10.1016/S0079-6700(01)00029-6
|
[5] |
Mu H, Pan L, Song D, et al. Neutral nickel catalysts for olefin homo- and copolymerization: relationships between catalyst structures and catalytic properties. Chem. Rev., 2015, 115 (22): 12091–12137. doi: 10.1021/cr500370f
|
[6] |
Nakamura A, Anselment T M J, Claverie J, et al. Ortho-phosphinobenzenesulfonate: a superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers. Acc. Chem. Res., 2013, 46 (7): 1438–1449. doi: 10.1021/ar300256h
|
[7] |
Sun Y, Chi M J, Bashir M S, et al. Influence of intramolecular π–π and H-bonding interactions on pyrazolylimine nickel-catalyzed ethylene polymerization and co-polymerization. New J. Chem., 2021, 45 (30): 13280–13285. doi: 10.1039/D1NJ02437J
|
[8] |
Younkin T R, Connor E F, Henderson J I, et al. Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms. Science, 2000, 287 (5452): 460–462. doi: 10.1126/science.287.5452.460
|
[9] |
Zou C, Dai S Y, Chen C L. Ethylene polymerization and copolymerization using nickel 2-iminopyridine- N-oxide catalysts: modulation of polymer molecular weights and molecular-weight distributions. Macromolecules, 2018, 51 (1): 49–56. doi: 10.1021/acs.macromol.7b02156
|
[10] |
Wang Q, Wang W B, Qu W C, et al. Ethylene homo and copolymerization by phosphorus-benzoquinone based homogeneous and heterogeneous nickel catalysts. J. Polym. Sci., 2023, 61 (2): 115–122. doi: 10.1002/pol.20220381
|
[11] |
Klabunde U, Itten S D. Nickel catalysis for ethylene homo- and co-polymerization. J. Mol. Catal., 1987, 41 (1/2): 123–134. doi: 10.1016/0304-5102(87)80023-8
|
[12] |
Wang W B, Chen M, Pang W M, et al. Palladium-catalyzed synthesis of norbornene-based polar-functionalized polyolefin elastomers. Macromolecules, 2021, 54 (7): 3197–3203. doi: 10.1021/acs.macromol.1c00201
|
[13] |
Johnson L K, Killian C M, Brookhart M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. J. Am. Chem. Soc., 1995, 117 (23): 6414–6415. doi: 10.1021/ja00128a054
|
[14] |
Hu X Q, Kang X H, Jian Z B. Suppression of chain transfer at high temperature in catalytic olefin polymerization. Angew. Chem. Int. Ed., 2022, 61 (33): e202207363 doi: 10.1002/anie.202207363
|
[15] |
Zheng H D, Li Y W, Du W B, et al. Unprecedented square-planar α-diimine dibromonickel complexes and their ethylene polymerizations modulated by Ni–phenyl interactions. Macromolecules, 2022, 55 (9): 3533–3540 doi: 10.1021/acs.macromol.2c00360
|
[16] |
Lu W Q, Ding B H, Zou W P, et al. Direct synthesis of polyethylene thermoplastic elastomers with high molecular weight and excellent elastic recovery via a hybrid steric bulky strategy. Eur. Poly. J., 2023, 201 (11): 112577 doi: 10.1016/j.eurpolymj.2023.112577
|
[17] |
Ji H Y, Zhang Y X, Chi Y, et al. Concerted flexible and steric strategy in α-diimine nickel and palladium mediated insertion (Co-)Polymerization. Polymer, 2024, 290: 126591. doi: 10.1016/j.polymer.2023.126591
|
[18] |
Rhinehart J L, Brown L A, Long B K. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J. Am. Chem. Soc., 2013, 135 (44): 16316–16319. doi: 10.1021/ja408905t
|
[19] |
Dai S Y, Sui X L, Chen C L. Highly robust palladium(II) α–diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate. Angew. Chem. Int. Ed., 2015, 54 (34): 9948–9953. doi: 10.1002/anie.201503708
|
[20] |
Padilla-Vélez O, O’Connor K S, LaPointe A M, et al. Switchable living nickel(II) α-diimine catalyst for ethylene polymerisation. Chem. Commun., 2019, 55 (53): 7607–7610. doi: 10.1039/C9CC03154E
|
[21] |
Wang F Z, Yuan J C, Li Q S, et al. New nickel(II) diimine complexes bearing phenyl and sec-phenethyl groups: synthesis, characterization and ethylene polymerization behaviour. Appl. Organomet. Chem., 2014, 28 (7): 477–483. doi: 10.1002/aoc.3151
|
[22] |
Rose J M, Deplace F, Lynd N A, et al. C2-symmetric Ni(II) α-diimines featuring cumyl-derived ligands: synthesis of improved elastomeric regioblock polypropylenes. Macromolecules, 2008, 41 (24): 9548–9555. doi: 10.1021/ma8019943
|
[23] |
Cherian A E, Rose J M, Lobkovsky E B, et al. A C2-symmetric, living α-diimine Ni(II) catalyst: regioblock copolymers from propylene. J. Am. Chem. Soc., 2005, 127 (40): 13770–13771. doi: 10.1021/ja0540021
|
[24] |
Vaccarello D N, O’Connor K S, Iacono P, et al. Synthesis of semicrystalline polyolefin materials: precision methyl branching via stereoretentive chain walking. J. Am. Chem. Soc., 2018, 140 (20): 6208–6211. doi: 10.1021/jacs.8b02963
|
JUSTC-2024-0001 Supporting information.docx |
Figure 2. Crystal structure of Ni1. The selected bond lengths (Å) and angles (°) were as follows: Br2–Ni1 = 2.3442(13), Br1–Ni1 = 2.3577(13), Ni1–N1 = 2.043(5), Ni1–N2 = 0.055(6), Br2–Ni1–Br1 = 110.57(5), N1–Ni1–N2 = 83.0(2), N1–Ni1–Br2 = 97.94(17), N1–Ni1–Br1 = 134.85(18), and N2–Ni1–Br1 = 99.18(16).
Figure 3. Crystal structure of Ni2. The selected bond lengths (Å) and angles (°) are as follows: Br1–Ni1 = 2.3451(9), Ni1–Br2 = 2.3256(9), Ni1–N2 = 2.020(4), Ni1–N1 = 2.020(4), Br2–Ni1–Br1 = 122.07(4), N2–Ni1–Br1 = 115.23(10), N2–Ni1–Br2 = 107.94(10), N1–Ni1–Br1 = 101.99(10), N1–Ni1–Br2 = 120.38(10), and N1–Ni1–N2 = 82.98(15).
Figure 4. The polymerization performance of catalysts. (a) Polymer weight comparisons of generated polyethylene at 0 °C, 30 °C, 60 °C and 90 °C. (b) Molecular weight comparisons of generated polyethylene at 0 °C, 30 °C, 60 °C and 90 °C. (c) Branching density comparisons of generated polyethylene at 0 °C, 30 °C, 60 °C and 90 °C. (d) Time-dependent studies (polymer yields vs polymerization time) at 90 °C.
[1] |
Ittel S D, Johnson L K, Brookhart M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev., 2000, 100 (4): 1169–1204. doi: 10.1021/cr9804644
|
[2] |
Natta G, Pino P, Corradini P, et al. Crystalline high polymers of α-olefins. J. Am. Chem. Soc., 1955, 77 (6): 1708–1710. doi: 10.1021/ja01611a109
|
[3] |
Ziegler K, Holzkamp E, Breil H, et al. Polymerisation von Äthylen und anderen Olefinen. Angew. Chem., 1955, 67 (16): 426. doi: 10.1002/ange.19550671610
|
[4] |
Galli P, Vecellio G. Technology: driving force behind innovation and growth of polyolefins. Prog. Polym. Sci., 2001, 26 (8): 1287–1336. doi: 10.1016/S0079-6700(01)00029-6
|
[5] |
Mu H, Pan L, Song D, et al. Neutral nickel catalysts for olefin homo- and copolymerization: relationships between catalyst structures and catalytic properties. Chem. Rev., 2015, 115 (22): 12091–12137. doi: 10.1021/cr500370f
|
[6] |
Nakamura A, Anselment T M J, Claverie J, et al. Ortho-phosphinobenzenesulfonate: a superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers. Acc. Chem. Res., 2013, 46 (7): 1438–1449. doi: 10.1021/ar300256h
|
[7] |
Sun Y, Chi M J, Bashir M S, et al. Influence of intramolecular π–π and H-bonding interactions on pyrazolylimine nickel-catalyzed ethylene polymerization and co-polymerization. New J. Chem., 2021, 45 (30): 13280–13285. doi: 10.1039/D1NJ02437J
|
[8] |
Younkin T R, Connor E F, Henderson J I, et al. Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms. Science, 2000, 287 (5452): 460–462. doi: 10.1126/science.287.5452.460
|
[9] |
Zou C, Dai S Y, Chen C L. Ethylene polymerization and copolymerization using nickel 2-iminopyridine- N-oxide catalysts: modulation of polymer molecular weights and molecular-weight distributions. Macromolecules, 2018, 51 (1): 49–56. doi: 10.1021/acs.macromol.7b02156
|
[10] |
Wang Q, Wang W B, Qu W C, et al. Ethylene homo and copolymerization by phosphorus-benzoquinone based homogeneous and heterogeneous nickel catalysts. J. Polym. Sci., 2023, 61 (2): 115–122. doi: 10.1002/pol.20220381
|
[11] |
Klabunde U, Itten S D. Nickel catalysis for ethylene homo- and co-polymerization. J. Mol. Catal., 1987, 41 (1/2): 123–134. doi: 10.1016/0304-5102(87)80023-8
|
[12] |
Wang W B, Chen M, Pang W M, et al. Palladium-catalyzed synthesis of norbornene-based polar-functionalized polyolefin elastomers. Macromolecules, 2021, 54 (7): 3197–3203. doi: 10.1021/acs.macromol.1c00201
|
[13] |
Johnson L K, Killian C M, Brookhart M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. J. Am. Chem. Soc., 1995, 117 (23): 6414–6415. doi: 10.1021/ja00128a054
|
[14] |
Hu X Q, Kang X H, Jian Z B. Suppression of chain transfer at high temperature in catalytic olefin polymerization. Angew. Chem. Int. Ed., 2022, 61 (33): e202207363 doi: 10.1002/anie.202207363
|
[15] |
Zheng H D, Li Y W, Du W B, et al. Unprecedented square-planar α-diimine dibromonickel complexes and their ethylene polymerizations modulated by Ni–phenyl interactions. Macromolecules, 2022, 55 (9): 3533–3540 doi: 10.1021/acs.macromol.2c00360
|
[16] |
Lu W Q, Ding B H, Zou W P, et al. Direct synthesis of polyethylene thermoplastic elastomers with high molecular weight and excellent elastic recovery via a hybrid steric bulky strategy. Eur. Poly. J., 2023, 201 (11): 112577 doi: 10.1016/j.eurpolymj.2023.112577
|
[17] |
Ji H Y, Zhang Y X, Chi Y, et al. Concerted flexible and steric strategy in α-diimine nickel and palladium mediated insertion (Co-)Polymerization. Polymer, 2024, 290: 126591. doi: 10.1016/j.polymer.2023.126591
|
[18] |
Rhinehart J L, Brown L A, Long B K. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J. Am. Chem. Soc., 2013, 135 (44): 16316–16319. doi: 10.1021/ja408905t
|
[19] |
Dai S Y, Sui X L, Chen C L. Highly robust palladium(II) α–diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate. Angew. Chem. Int. Ed., 2015, 54 (34): 9948–9953. doi: 10.1002/anie.201503708
|
[20] |
Padilla-Vélez O, O’Connor K S, LaPointe A M, et al. Switchable living nickel(II) α-diimine catalyst for ethylene polymerisation. Chem. Commun., 2019, 55 (53): 7607–7610. doi: 10.1039/C9CC03154E
|
[21] |
Wang F Z, Yuan J C, Li Q S, et al. New nickel(II) diimine complexes bearing phenyl and sec-phenethyl groups: synthesis, characterization and ethylene polymerization behaviour. Appl. Organomet. Chem., 2014, 28 (7): 477–483. doi: 10.1002/aoc.3151
|
[22] |
Rose J M, Deplace F, Lynd N A, et al. C2-symmetric Ni(II) α-diimines featuring cumyl-derived ligands: synthesis of improved elastomeric regioblock polypropylenes. Macromolecules, 2008, 41 (24): 9548–9555. doi: 10.1021/ma8019943
|
[23] |
Cherian A E, Rose J M, Lobkovsky E B, et al. A C2-symmetric, living α-diimine Ni(II) catalyst: regioblock copolymers from propylene. J. Am. Chem. Soc., 2005, 127 (40): 13770–13771. doi: 10.1021/ja0540021
|
[24] |
Vaccarello D N, O’Connor K S, Iacono P, et al. Synthesis of semicrystalline polyolefin materials: precision methyl branching via stereoretentive chain walking. J. Am. Chem. Soc., 2018, 140 (20): 6208–6211. doi: 10.1021/jacs.8b02963
|