Exploring the topological effect of linear and cyclic macroCTAs during polymerization-induced self-assembly (PISA)
-
Abstract
Polymerization-induced self-assembly (PISA) is a robust strategy for the syntheses of block copolymer nano-objects with various morphologies. Although PISA has been extensively studied, the use of cyclic macromolecular chain transfer agents (macroCTAs) as the hydrophilic block has not been reported. We explored the effects of macroCTA topology on the polymerization kinetics and morphologies of block copolymer assemblies during reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization. To this end, linear and cyclic poly (ethylene oxide) (PEO) with 4-(4-cyanopentanoic acid) dithiobenzoate (CPADB) groups were synthesized and used as CTAs to mediate the RAFT polymerization of benzyl methacrylate (BzMA) and 2,3,4,5,6-pentafluorostyrene (PFSt) under PISA formulation. Interestingly, the nucleation period of the linear PEO is slightly shorter than that of its cyclic analog, and the cyclic hydrophilic segment leads to a delayed morphological transition during PISA.
-
-