[1] |
Borch K. An attempt to determine the optimum amount of stop loss reinsurance. In: Transactions of the 16th International Congress of Actuaries. Brussels, Belgium: International Congress of Actuaries, 1960: 597–610.
|
[2] |
Arrow K J. Uncertainty and the welfare economics of medical care. The American Economic Review, 1963, 53 (5): 941–973.
|
[3] |
Kaluszka M. Optimal reinsurance under mean-variance premium principles. Insurance: Mathematics and Economics, 2001, 28 (1): 61–67. doi: 10.1016/S0167-6687(00)00066-4
|
[4] |
Kaluszka M, Krzeszowiec M. Pricing insurance contracts under cumulative prospect theory. Insurance: Mathematics and Economics, 2012, 50 (1): 159–166. doi: 10.1016/j.insmatheco.2011.11.001
|
[5] |
Cai J, Tan K S, Weng C, et al. Optimal reinsurance under VaR and CTE risk measures. Insurance: Mathematics and Economics, 2008, 43 (1): 185–196. doi: 10.1016/j.insmatheco.2008.05.011
|
[6] |
Cheung K C. Optimal reinsurance revisited: A geometric approach. ASTIN Bulletin, 2010, 40 (1): 221–239. doi: 10.2143/AST.40.1.2049226
|
[7] |
Cui W, Yang J, Wu L. Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles. Insurance: Mathematics and Economics, 2013, 53 (1): 74–85. doi: 10.1016/j.insmatheco.2013.03.007
|
[8] |
Cheung K C, Sung K, Yam S, et al. Optimal reinsurance under general law-invariant risk measures. Scandinavian Actuarial Journal, 2014, 2014 (1): 72–91. doi: 10.1080/03461238.2011.636880
|
[9] |
Cai J, Liu H, Wang R. Pareto-optimal reinsurance arrangements under general model settings. Insurance: Mathematics and Economics, 2017, 77: 24–37. doi: 10.1016/j.insmatheco.2017.08.004
|
[10] |
Asimit A V, Cheung K C, Chong W F, et al. Pareto-optimal insurance contracts with premium budget and minimum charge constraints. Insurance: Mathematics and Economics, 2020, 95: 17–27. doi: 10.1016/j.insmatheco.2020.08.001
|
[11] |
Jiang W, Hong H, Ren J. Pareto-optimal reinsurance policies with maximal synergy. Insurance: Mathematics and Economics, 2021, 96: 185–198. doi: 10.1016/j.insmatheco.2020.11.009
|
[12] |
Borch K. The optimal reinsurance treaty. ASTIN Bulletin, 1969, 5 (2): 293–297. doi: 10.1017/S051503610000814X
|
[13] |
Aase K. The Nash bargaining solution vs. equilibrium in a reinsurance syndicate. Scandinavian Actuarial Journal, 2009, 2009 (3): 219–238. doi: 10.1080/03461230802425834
|
[14] |
Boonen T, Tan K S, Zhuang S C. Pricing in reinsurance bargaining with comonotonic additive utility functions. ASTIN Bulletin, 2016, 46 (2): 507–530. doi: 10.1017/asb.2016.8
|
[15] |
Chen L, Shen Y. On a new paradigm of optimal reinsurance: A stochastic Stackelberg differential game between an insurer and a reinsurer. ASTIN Bulletin, 2018, 48 (2): 905–960. doi: 10.1017/asb.2018.3
|
[16] |
Cheung K C, Yam S C P, Zhang Y. Risk-adjusted Bowley reinsurance under distorted probabilities. Insurance: Mathematics and Economics, 2019, 86: 64–72. doi: 10.1016/j.insmatheco.2019.02.006
|
[17] |
Gavagan J, Hu L, Lee G, et al. Optimal reinsurance with model uncertainty and Stackelberg game. Scandinavian Actuarial Journal, 2022, 2022 (1): 29–48. doi: 10.1080/03461238.2021.1925735
|
[18] |
Horst U, Moreno-Bromberg S. Risk minimization and optimal derivative design in a principal agent game. Mathematics and Financial Economics, 2008, 2 (1): 1–27. doi: 10.1007/s11579-008-0012-8
|
[19] |
Cheung K C, Yam S C P, Yuen F. Reinsurance contract design with adverse selection. Scandinavian Actuarial Journal, 2019, 2019 (9): 784–798. doi: 10.1080/03461238.2019.1616323
|
[20] |
Chan F, Gerber H. The reinsurer’s monopoly and the Bowley solution. ASTIN Bulletin, 1985, 15 (2): 141–148. doi: 10.2143/AST.15.2.2015025
|
[21] |
Boonen T J, Cheung K C, Zhang Y. Bowley reinsurance with asymmetric information on the insurer’s risk preferences. Scandinavian Actuarial Journal, 2021, 2021 (7): 623–644. doi: 10.1080/03461238.2020.1867631
|
[22] |
Boonen T J, Zhang Y. Bowley reinsurance with asymmetric information: a first-best solution. Scandinavian Actuarial Journal, 2022, 2022 (6): 532–551. doi: 10.1080/03461238.2021.1998922
|
[23] |
Liang X, Wang R, Young V. Optimal insurance to maximize RDEU under a distortion-deviation premium principle. Insurance: Mathematics and Economics, 2022, 104: 35–59. doi: 10.1016/j.insmatheco.2022.01.007
|
[24] |
Asimit A V, Badescu A M, Cheung K C. Optimal reinsurance in the presence of counterparty default risk. Insurance: Mathematics and Economics, 2013, 53 (3): 690–697. doi: 10.1016/j.insmatheco.2013.09.012
|
[25] |
Asimit A V, Badescu A M, Verdonck T. Optimal risk transfer under quantile-based risk measurers. Insurance: Mathematics and Economics, 2013, 53 (1): 252–265. doi: 10.1016/j.insmatheco.2013.05.005
|
[26] |
Cai J, Lemieux C, Liu F. Optimal reinsurance with regulatory initial capital and default risk. Insurance: Mathematics and Economics, 2014, 57: 13–24. doi: 10.1016/j.insmatheco.2014.04.006
|
[27] |
Lo A. How does reinsurance create value to an insurer? A cost-benefit analysis incorporating default risk. Risks, 2016, 4 (4): 48. doi: /10.3390/risks4040048
|
[28] |
Huberman G, Mayers D, Smith Jr C W. Optimal insurance policy indemnity schedules. Bell Journal of Economics, 1983, 14 (2): 415–426. doi: 10.2307/3003643
|
[29] |
Zhuang S C, Weng C, Tan K S. et al. Marginal indemnification function formulation for optimal reinsurance. Insurance: Mathematics and Economics, 2016, 67: 65–76. doi: 10.1016/j.insmatheco.2015.12.003
|
[30] |
Wang S S. Premium calculation by transforming the layer premium density. ASTIN Bulletin, 1996, 26: 71–92. doi: 10.2143/AST.26.1.563234
|
[31] |
Denneberg D. Premium calculation: Why standard deviation should be replaced by absolute deviation. ASTIN Bulletin, 1990, 20 (2): 181–190. doi: 10.2143/AST.20.2.2005441
|
[32] |
Laffont J J, Martimort D. The Theory of Incentives: The Principal-Agent Model. Princeton, USA: Princeton University Press, 2009.
|
[33] |
Boonen T J, Jiang W. Mean-variance insurance design with counterparty risk and incentive compatibility. ASTIN Bulletin, 2022, 52 (2): 645–667. doi: 10.1017/asb.2021.36
|
[1] |
Borch K. An attempt to determine the optimum amount of stop loss reinsurance. In: Transactions of the 16th International Congress of Actuaries. Brussels, Belgium: International Congress of Actuaries, 1960: 597–610.
|
[2] |
Arrow K J. Uncertainty and the welfare economics of medical care. The American Economic Review, 1963, 53 (5): 941–973.
|
[3] |
Kaluszka M. Optimal reinsurance under mean-variance premium principles. Insurance: Mathematics and Economics, 2001, 28 (1): 61–67. doi: 10.1016/S0167-6687(00)00066-4
|
[4] |
Kaluszka M, Krzeszowiec M. Pricing insurance contracts under cumulative prospect theory. Insurance: Mathematics and Economics, 2012, 50 (1): 159–166. doi: 10.1016/j.insmatheco.2011.11.001
|
[5] |
Cai J, Tan K S, Weng C, et al. Optimal reinsurance under VaR and CTE risk measures. Insurance: Mathematics and Economics, 2008, 43 (1): 185–196. doi: 10.1016/j.insmatheco.2008.05.011
|
[6] |
Cheung K C. Optimal reinsurance revisited: A geometric approach. ASTIN Bulletin, 2010, 40 (1): 221–239. doi: 10.2143/AST.40.1.2049226
|
[7] |
Cui W, Yang J, Wu L. Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles. Insurance: Mathematics and Economics, 2013, 53 (1): 74–85. doi: 10.1016/j.insmatheco.2013.03.007
|
[8] |
Cheung K C, Sung K, Yam S, et al. Optimal reinsurance under general law-invariant risk measures. Scandinavian Actuarial Journal, 2014, 2014 (1): 72–91. doi: 10.1080/03461238.2011.636880
|
[9] |
Cai J, Liu H, Wang R. Pareto-optimal reinsurance arrangements under general model settings. Insurance: Mathematics and Economics, 2017, 77: 24–37. doi: 10.1016/j.insmatheco.2017.08.004
|
[10] |
Asimit A V, Cheung K C, Chong W F, et al. Pareto-optimal insurance contracts with premium budget and minimum charge constraints. Insurance: Mathematics and Economics, 2020, 95: 17–27. doi: 10.1016/j.insmatheco.2020.08.001
|
[11] |
Jiang W, Hong H, Ren J. Pareto-optimal reinsurance policies with maximal synergy. Insurance: Mathematics and Economics, 2021, 96: 185–198. doi: 10.1016/j.insmatheco.2020.11.009
|
[12] |
Borch K. The optimal reinsurance treaty. ASTIN Bulletin, 1969, 5 (2): 293–297. doi: 10.1017/S051503610000814X
|
[13] |
Aase K. The Nash bargaining solution vs. equilibrium in a reinsurance syndicate. Scandinavian Actuarial Journal, 2009, 2009 (3): 219–238. doi: 10.1080/03461230802425834
|
[14] |
Boonen T, Tan K S, Zhuang S C. Pricing in reinsurance bargaining with comonotonic additive utility functions. ASTIN Bulletin, 2016, 46 (2): 507–530. doi: 10.1017/asb.2016.8
|
[15] |
Chen L, Shen Y. On a new paradigm of optimal reinsurance: A stochastic Stackelberg differential game between an insurer and a reinsurer. ASTIN Bulletin, 2018, 48 (2): 905–960. doi: 10.1017/asb.2018.3
|
[16] |
Cheung K C, Yam S C P, Zhang Y. Risk-adjusted Bowley reinsurance under distorted probabilities. Insurance: Mathematics and Economics, 2019, 86: 64–72. doi: 10.1016/j.insmatheco.2019.02.006
|
[17] |
Gavagan J, Hu L, Lee G, et al. Optimal reinsurance with model uncertainty and Stackelberg game. Scandinavian Actuarial Journal, 2022, 2022 (1): 29–48. doi: 10.1080/03461238.2021.1925735
|
[18] |
Horst U, Moreno-Bromberg S. Risk minimization and optimal derivative design in a principal agent game. Mathematics and Financial Economics, 2008, 2 (1): 1–27. doi: 10.1007/s11579-008-0012-8
|
[19] |
Cheung K C, Yam S C P, Yuen F. Reinsurance contract design with adverse selection. Scandinavian Actuarial Journal, 2019, 2019 (9): 784–798. doi: 10.1080/03461238.2019.1616323
|
[20] |
Chan F, Gerber H. The reinsurer’s monopoly and the Bowley solution. ASTIN Bulletin, 1985, 15 (2): 141–148. doi: 10.2143/AST.15.2.2015025
|
[21] |
Boonen T J, Cheung K C, Zhang Y. Bowley reinsurance with asymmetric information on the insurer’s risk preferences. Scandinavian Actuarial Journal, 2021, 2021 (7): 623–644. doi: 10.1080/03461238.2020.1867631
|
[22] |
Boonen T J, Zhang Y. Bowley reinsurance with asymmetric information: a first-best solution. Scandinavian Actuarial Journal, 2022, 2022 (6): 532–551. doi: 10.1080/03461238.2021.1998922
|
[23] |
Liang X, Wang R, Young V. Optimal insurance to maximize RDEU under a distortion-deviation premium principle. Insurance: Mathematics and Economics, 2022, 104: 35–59. doi: 10.1016/j.insmatheco.2022.01.007
|
[24] |
Asimit A V, Badescu A M, Cheung K C. Optimal reinsurance in the presence of counterparty default risk. Insurance: Mathematics and Economics, 2013, 53 (3): 690–697. doi: 10.1016/j.insmatheco.2013.09.012
|
[25] |
Asimit A V, Badescu A M, Verdonck T. Optimal risk transfer under quantile-based risk measurers. Insurance: Mathematics and Economics, 2013, 53 (1): 252–265. doi: 10.1016/j.insmatheco.2013.05.005
|
[26] |
Cai J, Lemieux C, Liu F. Optimal reinsurance with regulatory initial capital and default risk. Insurance: Mathematics and Economics, 2014, 57: 13–24. doi: 10.1016/j.insmatheco.2014.04.006
|
[27] |
Lo A. How does reinsurance create value to an insurer? A cost-benefit analysis incorporating default risk. Risks, 2016, 4 (4): 48. doi: /10.3390/risks4040048
|
[28] |
Huberman G, Mayers D, Smith Jr C W. Optimal insurance policy indemnity schedules. Bell Journal of Economics, 1983, 14 (2): 415–426. doi: 10.2307/3003643
|
[29] |
Zhuang S C, Weng C, Tan K S. et al. Marginal indemnification function formulation for optimal reinsurance. Insurance: Mathematics and Economics, 2016, 67: 65–76. doi: 10.1016/j.insmatheco.2015.12.003
|
[30] |
Wang S S. Premium calculation by transforming the layer premium density. ASTIN Bulletin, 1996, 26: 71–92. doi: 10.2143/AST.26.1.563234
|
[31] |
Denneberg D. Premium calculation: Why standard deviation should be replaced by absolute deviation. ASTIN Bulletin, 1990, 20 (2): 181–190. doi: 10.2143/AST.20.2.2005441
|
[32] |
Laffont J J, Martimort D. The Theory of Incentives: The Principal-Agent Model. Princeton, USA: Princeton University Press, 2009.
|
[33] |
Boonen T J, Jiang W. Mean-variance insurance design with counterparty risk and incentive compatibility. ASTIN Bulletin, 2022, 52 (2): 645–667. doi: 10.1017/asb.2021.36
|