[1] |
Diggle P J, Heagerty P J, Liang K Y, et al. Analysis of Longitudinal Data. Oxford: Oxford University Press, 2002 .
|
[2] |
Diggle P J, Verbyla A P. Nonparametric estimation of covariance structure in longitudinal data. Biometrics, 1998, 54 (2): 401–415.
|
[3] |
Pourahmadi M. Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika, 1999, 86 (3): 677–690. doi: 10.1093/biomet/86.3.677
|
[4] |
Zhang W, Leng C. A moving average Cholesky factor model in covariance modelling for longitudinal data. Biometrika, 2012, 99 (1): 141–150. doi: 10.1093/biomet/asr068
|
[5] |
Chen Z, Dunson D B. Random effects selection in linear mixed models. Biometrics, 2003, 59 (4): 762–769. doi: 10.1111/j.0006-341X.2003.00089.x
|
[6] |
Pourahmadi M. Cholesky decompositions and estimation of a covariance matrix: orthogonality of variance-correlation parameters. Biometrika, 2007, 94 (4): 1006–1013. doi: 10.1093/biomet/asm073
|
[7] |
Maadooliat M, Pourahmadi M, Huang J Z. Robust estimation of the correlation matrix of longitudinal data. Statistics and Computing, 2013, 23: 17–28. doi: 10.1007/s11222-011-9284-6
|
[8] |
Zhang W, Leng C, Tang C Y. A joint modelling approach for longitudinal studies. Journal of the Royal Statistical Society Series B:Statistical Methodology, 2015, 77 (1): 219–238. doi: 10.1111/rssb.12065
|
[9] |
Lin T I, Wang Y J. A robust approach to joint modeling of mean and scale covariance for longitudinal data. Journal of Statistical Planning and Inference, 2009, 139 (9): 3013–3026. doi: 10.1016/j.jspi.2009.02.008
|
[10] |
Guney Y, Arslan O, Gokalp-Yavuz F. Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm. Journal of Multivariate Analysis, 2022, 191: 105026. doi: 10.1016/j.jmva.2022.105026
|
[11] |
Pourahmadi M. Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. Biometrika, 2000, 87 (2): 425–435. doi: 10.1093/biomet/87.2.425
|
[12] |
Anderson D N. A multivariate Linnik distribution. Statistics & Probability Letters, 1992, 14 (4): 333–336. doi: 10.1016/0167-7152(92)90067-F
|
[13] |
Ernst M D. A multivariate generalized Laplace distribution. Computational Statistics, 1998, 13 (2): 227–232.
|
[14] |
Fernández C, Osiewalski J, Steel M F. Modeling and inference with υ-spherical distributions. Journal of the American Statistical Association, 1995, 90 (432): 1331–1340. doi: 10.1080/01621459.1995.10476637
|
[15] |
Portilla J, Strela V, Wainwright M J, et al. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 2003, 12 (11): 1338–1351. doi: 10.1109/TIP.2003.818640
|
[16] |
Kotz S, Kozubowski T J, Podgórski K. The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance. Boston, MA: Birkhäuser, 2001 .
|
[17] |
Press W H, Teukolsky S A, Vetterling W T, et al. Numerical Recipes: The Art of Scientific Computing. 3rd ed. Cambridge: Cambridge University Press, 2007 .
|
[18] |
Pan J, Pan Y. jmcm: An R package for joint mean-covariance modeling of longitudinal data. Journal of Statistical Software, 2017, 82: 1–29. doi: 10.18637/jss.v082.i09
|
[19] |
Kenward M G. A method for comparing profiles of repeated measurements. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1987, 36 (3): 296–308. doi: 10.2307/2347788
|
[20] |
Pan J, Mackenzie G. On modelling mean-covariance structures in longitudinal studies. Biometrika, 2003, 90 (1): 239–244. doi: 10.1093/biomet/90.1.239
|
[21] |
Belenky G, Wesensten N J, Thorne D R, et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. Journal of Sleep Research, 2003, 12 (1): 1–12. doi: 10.1046/j.1365-2869.2003.00337.x
|
[22] |
Lin T I, Wang W L. Bayesian inference in joint modelling of location and scale parameters of the t distribution for longitudinal data. Journal of Statistical Planning and Inference, 2011, 141 (4): 1543–1553. doi: 10.1016/j.jspi.2010.11.001
|
[23] |
Lee K, Baek C, Daniels M J. ARMA Cholesky factor models for the covariance matrix of linear models. Computational Statistics & Data Analysis, 2017, 115: 267–280. doi: 10.1016/j.csda.2017.05.001
|
[24] |
Zhang W, Xie F, Tan J. A robust joint modeling approach for longitudinal data with informative dropouts. Computational Statistics, 2020, 35: 1759–1783. doi: 10.1007/s00180-020-00972-6
|
[25] |
Yu J, Nummi T, Pan J. Mixture regression for longitudinal data based on joint mean-covariance model. Journal of Multivariate Analysis, 2022, 190: 104956. doi: 10.1016/j.jmva.2022.104956
|
[26] |
Chiu T Y M, Leonard T, Tsui K W. The matrix-logarithmic covariance model. Journal of the American Statistical Association, 1996, 91 (433): 198–210. doi: 10.1080/01621459.1996.10476677
|
[27] |
Rubin H. Uniform convergence of random functions with applications to statistics. The Annals of Mathematical Statistics, 1956, 27 (1): 200–203. doi: 10.1214/aoms/1177728359
|
[28] |
Royden H L, Fitzpatrick P. Real Analysis. New York: Macmillan, 1968 .
|
[1] |
Diggle P J, Heagerty P J, Liang K Y, et al. Analysis of Longitudinal Data. Oxford: Oxford University Press, 2002 .
|
[2] |
Diggle P J, Verbyla A P. Nonparametric estimation of covariance structure in longitudinal data. Biometrics, 1998, 54 (2): 401–415.
|
[3] |
Pourahmadi M. Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika, 1999, 86 (3): 677–690. doi: 10.1093/biomet/86.3.677
|
[4] |
Zhang W, Leng C. A moving average Cholesky factor model in covariance modelling for longitudinal data. Biometrika, 2012, 99 (1): 141–150. doi: 10.1093/biomet/asr068
|
[5] |
Chen Z, Dunson D B. Random effects selection in linear mixed models. Biometrics, 2003, 59 (4): 762–769. doi: 10.1111/j.0006-341X.2003.00089.x
|
[6] |
Pourahmadi M. Cholesky decompositions and estimation of a covariance matrix: orthogonality of variance-correlation parameters. Biometrika, 2007, 94 (4): 1006–1013. doi: 10.1093/biomet/asm073
|
[7] |
Maadooliat M, Pourahmadi M, Huang J Z. Robust estimation of the correlation matrix of longitudinal data. Statistics and Computing, 2013, 23: 17–28. doi: 10.1007/s11222-011-9284-6
|
[8] |
Zhang W, Leng C, Tang C Y. A joint modelling approach for longitudinal studies. Journal of the Royal Statistical Society Series B:Statistical Methodology, 2015, 77 (1): 219–238. doi: 10.1111/rssb.12065
|
[9] |
Lin T I, Wang Y J. A robust approach to joint modeling of mean and scale covariance for longitudinal data. Journal of Statistical Planning and Inference, 2009, 139 (9): 3013–3026. doi: 10.1016/j.jspi.2009.02.008
|
[10] |
Guney Y, Arslan O, Gokalp-Yavuz F. Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm. Journal of Multivariate Analysis, 2022, 191: 105026. doi: 10.1016/j.jmva.2022.105026
|
[11] |
Pourahmadi M. Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. Biometrika, 2000, 87 (2): 425–435. doi: 10.1093/biomet/87.2.425
|
[12] |
Anderson D N. A multivariate Linnik distribution. Statistics & Probability Letters, 1992, 14 (4): 333–336. doi: 10.1016/0167-7152(92)90067-F
|
[13] |
Ernst M D. A multivariate generalized Laplace distribution. Computational Statistics, 1998, 13 (2): 227–232.
|
[14] |
Fernández C, Osiewalski J, Steel M F. Modeling and inference with υ-spherical distributions. Journal of the American Statistical Association, 1995, 90 (432): 1331–1340. doi: 10.1080/01621459.1995.10476637
|
[15] |
Portilla J, Strela V, Wainwright M J, et al. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 2003, 12 (11): 1338–1351. doi: 10.1109/TIP.2003.818640
|
[16] |
Kotz S, Kozubowski T J, Podgórski K. The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance. Boston, MA: Birkhäuser, 2001 .
|
[17] |
Press W H, Teukolsky S A, Vetterling W T, et al. Numerical Recipes: The Art of Scientific Computing. 3rd ed. Cambridge: Cambridge University Press, 2007 .
|
[18] |
Pan J, Pan Y. jmcm: An R package for joint mean-covariance modeling of longitudinal data. Journal of Statistical Software, 2017, 82: 1–29. doi: 10.18637/jss.v082.i09
|
[19] |
Kenward M G. A method for comparing profiles of repeated measurements. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1987, 36 (3): 296–308. doi: 10.2307/2347788
|
[20] |
Pan J, Mackenzie G. On modelling mean-covariance structures in longitudinal studies. Biometrika, 2003, 90 (1): 239–244. doi: 10.1093/biomet/90.1.239
|
[21] |
Belenky G, Wesensten N J, Thorne D R, et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. Journal of Sleep Research, 2003, 12 (1): 1–12. doi: 10.1046/j.1365-2869.2003.00337.x
|
[22] |
Lin T I, Wang W L. Bayesian inference in joint modelling of location and scale parameters of the t distribution for longitudinal data. Journal of Statistical Planning and Inference, 2011, 141 (4): 1543–1553. doi: 10.1016/j.jspi.2010.11.001
|
[23] |
Lee K, Baek C, Daniels M J. ARMA Cholesky factor models for the covariance matrix of linear models. Computational Statistics & Data Analysis, 2017, 115: 267–280. doi: 10.1016/j.csda.2017.05.001
|
[24] |
Zhang W, Xie F, Tan J. A robust joint modeling approach for longitudinal data with informative dropouts. Computational Statistics, 2020, 35: 1759–1783. doi: 10.1007/s00180-020-00972-6
|
[25] |
Yu J, Nummi T, Pan J. Mixture regression for longitudinal data based on joint mean-covariance model. Journal of Multivariate Analysis, 2022, 190: 104956. doi: 10.1016/j.jmva.2022.104956
|
[26] |
Chiu T Y M, Leonard T, Tsui K W. The matrix-logarithmic covariance model. Journal of the American Statistical Association, 1996, 91 (433): 198–210. doi: 10.1080/01621459.1996.10476677
|
[27] |
Rubin H. Uniform convergence of random functions with applications to statistics. The Annals of Mathematical Statistics, 1956, 27 (1): 200–203. doi: 10.1214/aoms/1177728359
|
[28] |
Royden H L, Fitzpatrick P. Real Analysis. New York: Macmillan, 1968 .
|