[1] |
Schlegl T, Seeböck P, Waldstein S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Information Processing in Medical Imaging. Cham: Springer, 2017: 146–157.
|
[2] |
Akcay S, Atapour-Abarghouei A, Breckon T P. GANomaly: Semi-supervised anomaly detection via adversarial training. In: Jawahar C, Li H, Mori G, et al. editors. Computer Vision–ACCV 2018. Cham: Springer, 2018: 622–637.
|
[3] |
Bergmann P, Löwe S, Fauser M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. arXiv: 1807.02011, 2018.
|
[4] |
Cohen N, Hoshen Y. Sub-image anomaly detection with deep pyramid correspondences. arXiv: 2005.02357, 2020.
|
[5] |
Defard T, Setkov A, Loesch A, et al. PaDiM: A patch distribution modeling framework for anomaly detection and localization. In: Pattern recognition. ICPR international workshops and challenges. Cham: Springer, 2021: 475–489.
|
[6] |
Roth K, Pemula L, Zepeda J, et al. Towards total recall in industrial anomaly detection. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022: 14298–14308.
|
[7] |
Rudolph M, Wandt B, Rosenhahn B. Same same but DifferNet: Semi-supervised defect detection with normalizing flows. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE, 2021: 1906–1915.
|
[8] |
Gudovskiy D, Ishizaka S, Kozuka K. CFLOW-AD: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE, 2022: 1819–1828.
|
[9] |
Li C L, Sohn K, Yoon J, et al. CutPaste: self-supervised learning for anomaly detection and localization. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021: 9659–9669.
|
[10] |
Bergmann P, Fauser M, Sattlegger D, et al. Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020: 4182–4191.
|
[11] |
Salehi M, Sadjadi N, Baselizadeh S, et al. Multiresolution knowledge distillation for anomaly detection. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021: 14897–14907.
|
[12] |
Deng H, Li X. Anomaly detection via reverse distillation from one-class embedding. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022: 9727–9736.
|
[13] |
Bergmann P, Fauser M, Sattlegger D, et al. MVTec AD—a comprehensive real-world dataset for unsupervised anomaly detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019: 9584–9592.
|
[14] |
Hendrycks D, Dietterich T. Benchmarking neural network robustness to common corruptions and perturbations. arXiv: 1903.12261, 2019.
|
[15] |
Michaelis C, Mitzkus B, Geirhos R, et al. Benchmarking robustness in object detection: Autonomous driving when winter is coming. arXiv: 1907.07484, 2019.
|
[16] |
Kamann C, Rother C. Benchmarking the robustness of semantic segmentation models with respect to common corruptions. International Journal of Computer Vision, 2021, 129: 462–483. doi: 10.1007/s11263-020-01383-2
|
[17] |
Wang J, Jin S, Liu W, et al. When human pose estimation meets robustness: Adversarial algorithms and benchmarks. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021: 11850–11859.
|
[18] |
Schlegl T, Seeböck P, Waldstein S M, et al. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical Image Analysis, 2019, 54: 30–44. doi: 10.1016/j.media.2019.01.010
|
[19] |
Zavrtanik V, Kristan M, Skočaj D. Reconstruction by inpainting for visual anomaly detection. Pattern Recognition, 2021, 112: 107706. doi: 10.1016/j.patcog.2020.107706
|
[20] |
Rippel O, Mertens P, Merhof D. Modeling the distribution of normal data in pre-trained deep features for anomaly detection. In: 2020 25th International Conference on Pattern Recognition (ICPR). Milan, Italy: IEEE, 2021: 6726–6733.
|
[21] |
Golan I, El-Yaniv R. Deep anomaly detection using geometric transformations. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 9781–9791.
|
[22] |
Hendrycks D, Mazeika M, Kadavath S, et al. Using self-supervised learning can improve model robustness and uncertainty. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York: ACM, 2019: 15663–15674.
|
[23] |
Bergman L, Hoshen Y. Classification-based anomaly detection for general data. arXiv: 2005.02359, 2020.
|
[24] |
Sohn K, Li C L, Yoon J, et al. Learning and evaluating representations for deep one-class classification. arXiv: 2011.02578, 2011.
|
[25] |
Wang G, Han S, Ding E, et al. Student-teacher feature pyramid matching for anomaly detection. arXiv: 2103.04257, 2021.
|
[26] |
Goodge A, Hooi B, Ng S K, et al. Robustness of autoencoders for anomaly detection under adversarial impact. In: IJCAI'20: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. New York: ACM, 2021: 1244–1250
|
[27] |
Schneider M, Aspinall D, Bastian N D. Evaluating model robustness to adversarial samples in network intrusion detection. In: 2021 IEEE International Conference on Big Data (Big Data). Orlando, USA : IEEE, 2021: 3343–3352.
|
[28] |
Han D, Wang Z, Zhong Y, et al. Evaluating and improving adversarial robustness of machine learning-based network intrusion detectors. IEEE Journal on Selected Areas in Communications, 2021, 39 (8): 2632–2647. doi: 10.1109/JSAC.2021.3087242
|
[29] |
Perales Gómez Á L, Maimó L F, Clemente F J G, et al. A methodology for evaluating the robustness of anomaly detectors to adversarial attacks in industrial scenarios. IEEE Access, 2022, 10: 124582–124594. doi: 10.1109/ACCESS.2022.3224930
|
[30] |
Kloft M, Laskov P. Online anomaly detection under adversarial impact. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS). Sardinia, Italy: PMLR, 2010: 405–412.
|
[31] |
Madani P, Vlajic N. Robustness of deep autoencoder in intrusion detection under adversarial contamination. In: Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. New York: ACM, 2018: 1–8.
|
[32] |
Bovenzi G, Foggia A, Santella S, et al. Data poisoning attacks against autoencoder-based anomaly detection models: A robustness analysis. In: ICC 2022—IEEE International Conference on Communications. Seoul, Korea: IEEE, 2022: 5427–5432.
|
[33] |
Altindis S F, Dalva Y, Pehlivan H, et al. Benchmarking the robustness of instance segmentation models. arXiv: 2109.01123, 2021.
|
[34] |
Dooley S, Goldstein T, Dickerson J P. Robustness disparities in commercial face detection. arXiv: 2108.12508, 2021.
|
Figure 2. The pipeline of PatchCore[6]. Neighborhood aggregation enhances the patch representations extracted from a pre-trained model. Then the greedy sampling constructs a compact yet maximal representative memory bank. Finally, each patch is scored by calculating the distance between the patch representation and its nearest neighbor in the memory bank.
Figure 3. The pipeline of Reverse Distillation[12]. First, the teacher model acts as a feature extractor and outputs multi-scale features. Secondly, multi-scale features are merged and compressed into low-dimensional embeddings by the multi-scale feature fusion (MFF) and the one-class embedding (OCE) module. Third, the student model tries to reconstruct the multi-scale features output by the teacher model. Finally, the cosine distance is used to compare the outputs of the student and teacher models, resulting in an anomaly map.
Figure 4. Corruptions cause a globally consistent drift, while defects cause a local drift from the normal distribution. The average shift of all image patch features tends to align more closely with the drift caused by corruption than that caused by defects. Consequently, minimizing the average shift can effectively reduce the drift induced by corruption by aligning the corrupted features with the normal ones. Although this approach can alter the defect features, it remains insufficient to compensate for the drift caused by defects.
Figure 5. Analysis experiments. (a) The effect of multi-scale features in PatchCore on robustness. “1”, “2”, and “3” represent the features from layer1, layer2, and layer3 in ResNet, respectively. (b) The effect of neighborhood size on the robustness of the domain aggregation module in PatchCore. (c) The effect of multi-scale features on robustness in Reverse Distillation. (d) Effect of multi-scale distillation in Reverse Distillation on robustness. (e) Effect of the number of FAM iterations. (f) Effect of the number of FAM reference features.
[1] |
Schlegl T, Seeböck P, Waldstein S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Information Processing in Medical Imaging. Cham: Springer, 2017: 146–157.
|
[2] |
Akcay S, Atapour-Abarghouei A, Breckon T P. GANomaly: Semi-supervised anomaly detection via adversarial training. In: Jawahar C, Li H, Mori G, et al. editors. Computer Vision–ACCV 2018. Cham: Springer, 2018: 622–637.
|
[3] |
Bergmann P, Löwe S, Fauser M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. arXiv: 1807.02011, 2018.
|
[4] |
Cohen N, Hoshen Y. Sub-image anomaly detection with deep pyramid correspondences. arXiv: 2005.02357, 2020.
|
[5] |
Defard T, Setkov A, Loesch A, et al. PaDiM: A patch distribution modeling framework for anomaly detection and localization. In: Pattern recognition. ICPR international workshops and challenges. Cham: Springer, 2021: 475–489.
|
[6] |
Roth K, Pemula L, Zepeda J, et al. Towards total recall in industrial anomaly detection. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022: 14298–14308.
|
[7] |
Rudolph M, Wandt B, Rosenhahn B. Same same but DifferNet: Semi-supervised defect detection with normalizing flows. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE, 2021: 1906–1915.
|
[8] |
Gudovskiy D, Ishizaka S, Kozuka K. CFLOW-AD: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE, 2022: 1819–1828.
|
[9] |
Li C L, Sohn K, Yoon J, et al. CutPaste: self-supervised learning for anomaly detection and localization. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021: 9659–9669.
|
[10] |
Bergmann P, Fauser M, Sattlegger D, et al. Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020: 4182–4191.
|
[11] |
Salehi M, Sadjadi N, Baselizadeh S, et al. Multiresolution knowledge distillation for anomaly detection. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021: 14897–14907.
|
[12] |
Deng H, Li X. Anomaly detection via reverse distillation from one-class embedding. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022: 9727–9736.
|
[13] |
Bergmann P, Fauser M, Sattlegger D, et al. MVTec AD—a comprehensive real-world dataset for unsupervised anomaly detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019: 9584–9592.
|
[14] |
Hendrycks D, Dietterich T. Benchmarking neural network robustness to common corruptions and perturbations. arXiv: 1903.12261, 2019.
|
[15] |
Michaelis C, Mitzkus B, Geirhos R, et al. Benchmarking robustness in object detection: Autonomous driving when winter is coming. arXiv: 1907.07484, 2019.
|
[16] |
Kamann C, Rother C. Benchmarking the robustness of semantic segmentation models with respect to common corruptions. International Journal of Computer Vision, 2021, 129: 462–483. doi: 10.1007/s11263-020-01383-2
|
[17] |
Wang J, Jin S, Liu W, et al. When human pose estimation meets robustness: Adversarial algorithms and benchmarks. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021: 11850–11859.
|
[18] |
Schlegl T, Seeböck P, Waldstein S M, et al. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical Image Analysis, 2019, 54: 30–44. doi: 10.1016/j.media.2019.01.010
|
[19] |
Zavrtanik V, Kristan M, Skočaj D. Reconstruction by inpainting for visual anomaly detection. Pattern Recognition, 2021, 112: 107706. doi: 10.1016/j.patcog.2020.107706
|
[20] |
Rippel O, Mertens P, Merhof D. Modeling the distribution of normal data in pre-trained deep features for anomaly detection. In: 2020 25th International Conference on Pattern Recognition (ICPR). Milan, Italy: IEEE, 2021: 6726–6733.
|
[21] |
Golan I, El-Yaniv R. Deep anomaly detection using geometric transformations. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 9781–9791.
|
[22] |
Hendrycks D, Mazeika M, Kadavath S, et al. Using self-supervised learning can improve model robustness and uncertainty. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York: ACM, 2019: 15663–15674.
|
[23] |
Bergman L, Hoshen Y. Classification-based anomaly detection for general data. arXiv: 2005.02359, 2020.
|
[24] |
Sohn K, Li C L, Yoon J, et al. Learning and evaluating representations for deep one-class classification. arXiv: 2011.02578, 2011.
|
[25] |
Wang G, Han S, Ding E, et al. Student-teacher feature pyramid matching for anomaly detection. arXiv: 2103.04257, 2021.
|
[26] |
Goodge A, Hooi B, Ng S K, et al. Robustness of autoencoders for anomaly detection under adversarial impact. In: IJCAI'20: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. New York: ACM, 2021: 1244–1250
|
[27] |
Schneider M, Aspinall D, Bastian N D. Evaluating model robustness to adversarial samples in network intrusion detection. In: 2021 IEEE International Conference on Big Data (Big Data). Orlando, USA : IEEE, 2021: 3343–3352.
|
[28] |
Han D, Wang Z, Zhong Y, et al. Evaluating and improving adversarial robustness of machine learning-based network intrusion detectors. IEEE Journal on Selected Areas in Communications, 2021, 39 (8): 2632–2647. doi: 10.1109/JSAC.2021.3087242
|
[29] |
Perales Gómez Á L, Maimó L F, Clemente F J G, et al. A methodology for evaluating the robustness of anomaly detectors to adversarial attacks in industrial scenarios. IEEE Access, 2022, 10: 124582–124594. doi: 10.1109/ACCESS.2022.3224930
|
[30] |
Kloft M, Laskov P. Online anomaly detection under adversarial impact. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS). Sardinia, Italy: PMLR, 2010: 405–412.
|
[31] |
Madani P, Vlajic N. Robustness of deep autoencoder in intrusion detection under adversarial contamination. In: Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. New York: ACM, 2018: 1–8.
|
[32] |
Bovenzi G, Foggia A, Santella S, et al. Data poisoning attacks against autoencoder-based anomaly detection models: A robustness analysis. In: ICC 2022—IEEE International Conference on Communications. Seoul, Korea: IEEE, 2022: 5427–5432.
|
[33] |
Altindis S F, Dalva Y, Pehlivan H, et al. Benchmarking the robustness of instance segmentation models. arXiv: 2109.01123, 2021.
|
[34] |
Dooley S, Goldstein T, Dickerson J P. Robustness disparities in commercial face detection. arXiv: 2108.12508, 2021.
|