ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Research Articles: Chemistry

Synthesis of protected amines from N-hydroxyphthalimide esters via Curtius rearrangement

Cite this:
https://doi.org/10.52396/JUST-2021-0029
  • Received Date: 25 January 2021
  • Rev Recd Date: 21 February 2021
  • Publish Date: 28 February 2021
  • An efficient and mild method to prepare carbamoyl azides from NHP (N-hydroxyphthalimide) esters and TMSN3 was developed. The structure of carbamoyl azide was confirmed by the X-ray analysis. Corresponding carbamoyl azides were converted into carbamates for isolation. This methodology allows an efficient access to primary, secondary, tertiary alkyl and aryl carbamates. Mechanistic studies reveal that Curtius rearrangement is responsible for the generation of carbamoyl azides.
    An efficient and mild method to prepare carbamoyl azides from NHP (N-hydroxyphthalimide) esters and TMSN3 was developed. The structure of carbamoyl azide was confirmed by the X-ray analysis. Corresponding carbamoyl azides were converted into carbamates for isolation. This methodology allows an efficient access to primary, secondary, tertiary alkyl and aryl carbamates. Mechanistic studies reveal that Curtius rearrangement is responsible for the generation of carbamoyl azides.
  • loading
  • [1]
    Czakó B, Kürti L. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier, 2005.
    [2]
    Curtius T. 20. Hydrazide und azide organischer säuren I. Abhandlung. J. Prakt. Chem., 1894, 50: 275-294.
    [3]
    Weinstock J. Modified Curtius reaction. J. Org. Chem., 1961, 26: 3511.
    [4]
    Shioiri T, Ninomiya K, Yamada S. Diphenylphosphoryl azide. New convenient reagent for a modified Curtius reaction and for peptide synthesis. J. Am. Chem. Soc., 1972, 94: 6203-6205.
    [5]
    Warren J D, Press J B. Trimethylsilylazide/KN3/18-crown-6. Formation and Curtius rearrangement of acyl azides from unreactive acid chlorides. Synth. Commun., 1980, 10: 107-110.
    [6]
    Lebel H, Leogane O. Boc-protected amines via a mild and efficient one-pot Curtius rearrangement. Org. Lett., 2005, 7: 4107-4110.
    [7]
    Sureshbabu V V, Lalithamba H S, Narendra N, et al. New and simple synthesis of acid azides, ureas and carbamates from carboxylic acids: Application of peptide coupling agents EDC and HBTU. Org. Biomol. Chem., 2010, 8: 835-840.
    [8]
    Zhang Y P, Ge X, Li G G, et al. Catalytic decarboxylative C-N formation to generate alkyl, alkenyl and aryl amines. Angew. Chem., Int. Ed., 2021, 60: 1845-1852.
    [9]
    Prakash G K S, Iyer P S, Arvanaghi M, et al. Synthetic methods and reactions. 121. Zinc iodide catalyzed preparation of aroyl azides from aroyl chlorides and trimethylsilyl azide. J. Org. Chem., 1983, 48: 3358-3359.
    [10]
    Okada K, Okamoto K, Oda M. A new and practical method of decarboxylation: Photosensitized decarboxylation of N-acyloxyphthalimides via electron-transfer mechanism. J. Am. Chem. Soc., 1988, 110: 8736-8738.
    [11]
    Edwards J T, Merchant R R, Baran P S. Decarboxylative alkenylation. Nature, 2017, 545: 213-218.
    [12]
    Fawcett A, Pradeilles J, Aggarwal V K. Photoinduced decarboxylative borylation of carboxylic acids. Science, 2017, 357: 283-286.
    [13]
    Xue W, Oestreich M. Copper-catalyzed decarboxylative radical silylation of redox-active aliphatic carboxylic acid derivatives. Angew. Chem., Int. Ed., 2017, 56: 11649-11652.
    [14]
    Huihui K M M, Ackerman L K G, Weix D J, et al. Decarboxylative cross-electrophile coupling of N-hydroxyphthalimide esters with aryl iodides. J. Am. Chem. Soc., 2016, 138: 5016-5019.
    [15]
    Jiang W T, Yang S, Xiao B, et al. Zn-mediated decarboxylative carbagermatranation of aliphatic N-hydroxyphthalimide esters: Evidence for an alkylzinc intermediate. Chem. Sci., 2020, 11: 488-493.
    [16]
    Lyu X L, Huang S S, Wang Q M, et al. Visible-light-induced copper-catalyzed decarboxylative coupling of redox-active esters with Nheteroarenes. Org. Lett., 2019, 21: 5728-5732.
    [17]
    Zhao W, Wurz R P, Fu G C, et al. Photoinduced, copper-catalyzed decarboxylative C-N coupling to generate protected amines: An alternative to the Curtius rearrangement. J. Am. Chem. Soc., 2017, 139: 12153-12156.
  • 加载中

Catalog

    [1]
    Czakó B, Kürti L. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier, 2005.
    [2]
    Curtius T. 20. Hydrazide und azide organischer säuren I. Abhandlung. J. Prakt. Chem., 1894, 50: 275-294.
    [3]
    Weinstock J. Modified Curtius reaction. J. Org. Chem., 1961, 26: 3511.
    [4]
    Shioiri T, Ninomiya K, Yamada S. Diphenylphosphoryl azide. New convenient reagent for a modified Curtius reaction and for peptide synthesis. J. Am. Chem. Soc., 1972, 94: 6203-6205.
    [5]
    Warren J D, Press J B. Trimethylsilylazide/KN3/18-crown-6. Formation and Curtius rearrangement of acyl azides from unreactive acid chlorides. Synth. Commun., 1980, 10: 107-110.
    [6]
    Lebel H, Leogane O. Boc-protected amines via a mild and efficient one-pot Curtius rearrangement. Org. Lett., 2005, 7: 4107-4110.
    [7]
    Sureshbabu V V, Lalithamba H S, Narendra N, et al. New and simple synthesis of acid azides, ureas and carbamates from carboxylic acids: Application of peptide coupling agents EDC and HBTU. Org. Biomol. Chem., 2010, 8: 835-840.
    [8]
    Zhang Y P, Ge X, Li G G, et al. Catalytic decarboxylative C-N formation to generate alkyl, alkenyl and aryl amines. Angew. Chem., Int. Ed., 2021, 60: 1845-1852.
    [9]
    Prakash G K S, Iyer P S, Arvanaghi M, et al. Synthetic methods and reactions. 121. Zinc iodide catalyzed preparation of aroyl azides from aroyl chlorides and trimethylsilyl azide. J. Org. Chem., 1983, 48: 3358-3359.
    [10]
    Okada K, Okamoto K, Oda M. A new and practical method of decarboxylation: Photosensitized decarboxylation of N-acyloxyphthalimides via electron-transfer mechanism. J. Am. Chem. Soc., 1988, 110: 8736-8738.
    [11]
    Edwards J T, Merchant R R, Baran P S. Decarboxylative alkenylation. Nature, 2017, 545: 213-218.
    [12]
    Fawcett A, Pradeilles J, Aggarwal V K. Photoinduced decarboxylative borylation of carboxylic acids. Science, 2017, 357: 283-286.
    [13]
    Xue W, Oestreich M. Copper-catalyzed decarboxylative radical silylation of redox-active aliphatic carboxylic acid derivatives. Angew. Chem., Int. Ed., 2017, 56: 11649-11652.
    [14]
    Huihui K M M, Ackerman L K G, Weix D J, et al. Decarboxylative cross-electrophile coupling of N-hydroxyphthalimide esters with aryl iodides. J. Am. Chem. Soc., 2016, 138: 5016-5019.
    [15]
    Jiang W T, Yang S, Xiao B, et al. Zn-mediated decarboxylative carbagermatranation of aliphatic N-hydroxyphthalimide esters: Evidence for an alkylzinc intermediate. Chem. Sci., 2020, 11: 488-493.
    [16]
    Lyu X L, Huang S S, Wang Q M, et al. Visible-light-induced copper-catalyzed decarboxylative coupling of redox-active esters with Nheteroarenes. Org. Lett., 2019, 21: 5728-5732.
    [17]
    Zhao W, Wurz R P, Fu G C, et al. Photoinduced, copper-catalyzed decarboxylative C-N coupling to generate protected amines: An alternative to the Curtius rearrangement. J. Am. Chem. Soc., 2017, 139: 12153-12156.

    Article Metrics

    Article views (195) PDF downloads(278)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return