ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Research Articles: Chemistry

Synthesis of protected amines from N-hydroxyphthalimide esters via Curtius rearrangement

Cite this:
https://doi.org/10.52396/JUST-2021-0029
  • Received Date: 25 January 2021
  • Rev Recd Date: 21 February 2021
  • Publish Date: 28 February 2021

Catalog

    [1]
    Czakó B, Kürti L. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier, 2005.
    [2]
    Curtius T. 20. Hydrazide und azide organischer säuren I. Abhandlung. J. Prakt. Chem., 1894, 50: 275-294.
    [3]
    Weinstock J. Modified Curtius reaction. J. Org. Chem., 1961, 26: 3511.
    [4]
    Shioiri T, Ninomiya K, Yamada S. Diphenylphosphoryl azide. New convenient reagent for a modified Curtius reaction and for peptide synthesis. J. Am. Chem. Soc., 1972, 94: 6203-6205.
    [5]
    Warren J D, Press J B. Trimethylsilylazide/KN3/18-crown-6. Formation and Curtius rearrangement of acyl azides from unreactive acid chlorides. Synth. Commun., 1980, 10: 107-110.
    [6]
    Lebel H, Leogane O. Boc-protected amines via a mild and efficient one-pot Curtius rearrangement. Org. Lett., 2005, 7: 4107-4110.
    [7]
    Sureshbabu V V, Lalithamba H S, Narendra N, et al. New and simple synthesis of acid azides, ureas and carbamates from carboxylic acids: Application of peptide coupling agents EDC and HBTU. Org. Biomol. Chem., 2010, 8: 835-840.
    [8]
    Zhang Y P, Ge X, Li G G, et al. Catalytic decarboxylative C-N formation to generate alkyl, alkenyl and aryl amines. Angew. Chem., Int. Ed., 2021, 60: 1845-1852.
    [9]
    Prakash G K S, Iyer P S, Arvanaghi M, et al. Synthetic methods and reactions. 121. Zinc iodide catalyzed preparation of aroyl azides from aroyl chlorides and trimethylsilyl azide. J. Org. Chem., 1983, 48: 3358-3359.
    [10]
    Okada K, Okamoto K, Oda M. A new and practical method of decarboxylation: Photosensitized decarboxylation of N-acyloxyphthalimides via electron-transfer mechanism. J. Am. Chem. Soc., 1988, 110: 8736-8738.
    [11]
    Edwards J T, Merchant R R, Baran P S. Decarboxylative alkenylation. Nature, 2017, 545: 213-218.
    [12]
    Fawcett A, Pradeilles J, Aggarwal V K. Photoinduced decarboxylative borylation of carboxylic acids. Science, 2017, 357: 283-286.
    [13]
    Xue W, Oestreich M. Copper-catalyzed decarboxylative radical silylation of redox-active aliphatic carboxylic acid derivatives. Angew. Chem., Int. Ed., 2017, 56: 11649-11652.
    [14]
    Huihui K M M, Ackerman L K G, Weix D J, et al. Decarboxylative cross-electrophile coupling of N-hydroxyphthalimide esters with aryl iodides. J. Am. Chem. Soc., 2016, 138: 5016-5019.
    [15]
    Jiang W T, Yang S, Xiao B, et al. Zn-mediated decarboxylative carbagermatranation of aliphatic N-hydroxyphthalimide esters: Evidence for an alkylzinc intermediate. Chem. Sci., 2020, 11: 488-493.
    [16]
    Lyu X L, Huang S S, Wang Q M, et al. Visible-light-induced copper-catalyzed decarboxylative coupling of redox-active esters with Nheteroarenes. Org. Lett., 2019, 21: 5728-5732.
    [17]
    Zhao W, Wurz R P, Fu G C, et al. Photoinduced, copper-catalyzed decarboxylative C-N coupling to generate protected amines: An alternative to the Curtius rearrangement. J. Am. Chem. Soc., 2017, 139: 12153-12156.

    Article Metrics

    Article views (237) PDF downloads(371)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return