[1] |
Padamsee H. 50 years of success for SRF accelerators—a review. Superconductor Science and Technology, 2017, 30: 053003. doi: 10.1088/1361-6668/aa6376
|
[2] |
Padamsee H, Knobloch J, Hays T, et al. RF superconductivity for accelerators. Physics Today, 1999, 52: 54. doi: 10.1063/1.882759
|
[3] |
Mosnier A, Chel S, Hanus X, et al. Design of a heavily damped superconducting cavity for SOLEIL. In: Proceedings of the 1997 Particle Accelerator Conference (Cat. No. 97CH36167). Vancouver, Canada: IEEE, 1997 : 1709–1711.
|
[4] |
Marchand P, Baete J P, Cuoq R, et al. Operational experience with the SOLEIL superconducting RF system. In: 16th International Conference on Radio-Frequency Superconductivity. Paris: JACoW, 2013 : MOP064.
|
[5] |
Nadolski L S, Abeillé G, Abiven Y-M, et al. SOLEIL status report. In: 9th International Particle Accelerator Conferience. Vancouver, Canada: JACoW, 2018 : THPMK092.
|
[6] |
Furuya T, Asano K, Ishi Y, et al. Superconducting accelerating cavity for KEK B-factory. In: Proceedings of the 1995 Workshop on RF Superconductivity. Gif-sur-Yvette, France: JACoW, 1995 : 729–733.
|
[7] |
Huang T, Pan W, Wang G, et al. The development of the 499.8 MHz superconducting cavity system for BEPCII. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1013: 165649. doi: 10.1016/j.nima.2021.165649
|
[8] |
Wu C F, Tang Y, Tan M, et al. Research of the 499.8 MHz superconducting cavity system for HALF. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1050: 168176. doi: 10.1016/j.nima.2023.168176
|
[9] |
Marhauser F. Next generation HOM-damping. Superconductor Science and Technology, 2017, 30: 063002. doi: 10.1088/1361-6668/aa6b8d
|
[10] |
Craievich P, Bosland P, Chel S, et al. HOM couplers design for the SUPER-3HC cavity. In: PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No. 01CH37268). Chicago, USA: IEEE, 2001 : 1134–1136.
|
[11] |
Rimmer R A, Byrd J M, Li D. Comparison of calculated, measured, and beam sampled impedances of a higher-order-mode-damped RF cavity. Physical Review Special Topics Accelerators and Beams, 2000, 3: 102001. doi: 10.1103/PhysRevSTAB.3.102001
|
[12] |
Rimmer R A. Higher-order mode calculations, predictions and overview of damping schemes for energy recovering linacs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 557: 259–267. doi: 10.1016/j.nima.2005.10.080
|
[13] |
Haebel E. Couplers for cavities. In: CAS–CERN Accelerator School: Superconductivity in Particle Accelerators. Geneva, Switzerland: CERN, 1996: 231–264.
|
[14] |
Sekutowicz J. Higher order mode coupler for TESLA. In: Proceedings of the Sixth Workshop on RF Superconductivity. Newport News, USA: CEBAF, 1993 : 426–439.
|
[15] |
Papke K, Gerigk F, van Rienen U. Comparison of coaxial higher order mode couplers for the CERN Superconducting Proton Linac study. Physical Review Accelerators and Beams, 2017, 20: 060401. doi: 10.1103/PhysRevAccelBeams.20.060401
|
[16] |
Romanov G, Berrutti P, Khabiboulline T. Simulation of multipacting in SC low beta cavities at FNAL. In: 6th International Particle Accelerator Conference. Richmond, USA: JACoW, 2015 : 579–581.
|
[17] |
Merio M. Material properties for engineering analysis of SRF cavities. Batavia, USA: FermiLab, 2011 : Fermilab Specification 5500.000-ES-371110.
|
[18] |
Yu H, Liu J, Hou H, et al. Simulation of higher order modes and loss factor of a new type of 500-MHz single cell superconducting cavity at SSRF. Nuclear Science and Techniques, 2011, 22 (5): 257–260. doi: 10.13538/j.1001-8042/nst.22.257-260
|
[1] |
Padamsee H. 50 years of success for SRF accelerators—a review. Superconductor Science and Technology, 2017, 30: 053003. doi: 10.1088/1361-6668/aa6376
|
[2] |
Padamsee H, Knobloch J, Hays T, et al. RF superconductivity for accelerators. Physics Today, 1999, 52: 54. doi: 10.1063/1.882759
|
[3] |
Mosnier A, Chel S, Hanus X, et al. Design of a heavily damped superconducting cavity for SOLEIL. In: Proceedings of the 1997 Particle Accelerator Conference (Cat. No. 97CH36167). Vancouver, Canada: IEEE, 1997 : 1709–1711.
|
[4] |
Marchand P, Baete J P, Cuoq R, et al. Operational experience with the SOLEIL superconducting RF system. In: 16th International Conference on Radio-Frequency Superconductivity. Paris: JACoW, 2013 : MOP064.
|
[5] |
Nadolski L S, Abeillé G, Abiven Y-M, et al. SOLEIL status report. In: 9th International Particle Accelerator Conferience. Vancouver, Canada: JACoW, 2018 : THPMK092.
|
[6] |
Furuya T, Asano K, Ishi Y, et al. Superconducting accelerating cavity for KEK B-factory. In: Proceedings of the 1995 Workshop on RF Superconductivity. Gif-sur-Yvette, France: JACoW, 1995 : 729–733.
|
[7] |
Huang T, Pan W, Wang G, et al. The development of the 499.8 MHz superconducting cavity system for BEPCII. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1013: 165649. doi: 10.1016/j.nima.2021.165649
|
[8] |
Wu C F, Tang Y, Tan M, et al. Research of the 499.8 MHz superconducting cavity system for HALF. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1050: 168176. doi: 10.1016/j.nima.2023.168176
|
[9] |
Marhauser F. Next generation HOM-damping. Superconductor Science and Technology, 2017, 30: 063002. doi: 10.1088/1361-6668/aa6b8d
|
[10] |
Craievich P, Bosland P, Chel S, et al. HOM couplers design for the SUPER-3HC cavity. In: PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No. 01CH37268). Chicago, USA: IEEE, 2001 : 1134–1136.
|
[11] |
Rimmer R A, Byrd J M, Li D. Comparison of calculated, measured, and beam sampled impedances of a higher-order-mode-damped RF cavity. Physical Review Special Topics Accelerators and Beams, 2000, 3: 102001. doi: 10.1103/PhysRevSTAB.3.102001
|
[12] |
Rimmer R A. Higher-order mode calculations, predictions and overview of damping schemes for energy recovering linacs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 557: 259–267. doi: 10.1016/j.nima.2005.10.080
|
[13] |
Haebel E. Couplers for cavities. In: CAS–CERN Accelerator School: Superconductivity in Particle Accelerators. Geneva, Switzerland: CERN, 1996: 231–264.
|
[14] |
Sekutowicz J. Higher order mode coupler for TESLA. In: Proceedings of the Sixth Workshop on RF Superconductivity. Newport News, USA: CEBAF, 1993 : 426–439.
|
[15] |
Papke K, Gerigk F, van Rienen U. Comparison of coaxial higher order mode couplers for the CERN Superconducting Proton Linac study. Physical Review Accelerators and Beams, 2017, 20: 060401. doi: 10.1103/PhysRevAccelBeams.20.060401
|
[16] |
Romanov G, Berrutti P, Khabiboulline T. Simulation of multipacting in SC low beta cavities at FNAL. In: 6th International Particle Accelerator Conference. Richmond, USA: JACoW, 2015 : 579–581.
|
[17] |
Merio M. Material properties for engineering analysis of SRF cavities. Batavia, USA: FermiLab, 2011 : Fermilab Specification 5500.000-ES-371110.
|
[18] |
Yu H, Liu J, Hou H, et al. Simulation of higher order modes and loss factor of a new type of 500-MHz single cell superconducting cavity at SSRF. Nuclear Science and Techniques, 2011, 22 (5): 257–260. doi: 10.13538/j.1001-8042/nst.22.257-260
|