ISSN 0253-2778
CN 34-1054/N
School of Mathematics and Physics, Anhui University of Technology, Maanshan 243002, China
Jiahui Wang is currently a graduate student at the Anhui University of Technology. Her research interests mainly focus on warped product submanifolds and isoparametric hypersurfaces
Yecheng Zhu received his PhD from the University of Science and Technology of China. He is currently an associate professor at the Anhui University of Technology. He is mainly engaged in differential geometry
Yecheng Zhu, E-mail: zhuyc929@mail.ustc.edu.cn
By optimization methods on Riemannian submanifolds, we establish two inequalities between the intrinsic and extrinsic invariants, for generalized normalized δ-Casorati curvatures of warped product submanifolds in a Riemannian manifold of quasi-constant curvature. We generalize the conclusions of the optimal inequalities of submanifolds in real space forms.
The process of establishing the generalized normalized δ-Casorati curvatures inequality.
By optimization methods on Riemannian submanifolds, we establish two inequalities between the intrinsic and extrinsic invariants, for generalized normalized δ-Casorati curvatures of warped product submanifolds in a Riemannian manifold of quasi-constant curvature. We generalize the conclusions of the optimal inequalities of submanifolds in real space forms.
In 1993, Chen[1] introduced
The Casorati curvature was originally introduced in
In this study, we establish Chen-like inequalities for generalized normalized
Let
∥X∥2=∥π∗(X)∥2+f2(π(x))∥η∗(X)∥2 |
(1) |
for any tangent vector
A Riemannian manifold
˜R(X,Y,Z,W)=a[˜g(X,Z)˜g(Y,W)−˜g(Y,Z)˜g(X,W)]+b[˜g(X,Z)T(Y)T(W)−˜g(X,W)T(Y)T(Z)+˜g(Y,W)T(X)T(Z)−˜g(Y,Z)T(X)T(W)] |
(2) |
where
T(X)=˜g(X,P) |
(3) |
where
P=PT+P⊥ |
(4) |
Theorem 1.1. Let
2n(n−1)×{qΔff+p(p−1)a2+b(p−1)∥PT∥2Np1+q(q−1)a2+b(q−1)∥PT∥2Nq2}+δC(r;n−1)n(n−1)−npr(n2−n+qr−r)∥H∥2(n−1){(n2−n−r+qr)2+p2r2}⩾ |
(5) |
for any real number
\begin{split} &\dfrac{2}{n(n-1)}\times\Bigg\{\frac{q{\Delta}f}{f}+\frac{p(p-1)a}{2}+b(p-1){{\parallel}P^T{\parallel}}^2_{N_1^p}+\frac{q(q-1)a}{2}+\\ &b(q-
1){{\parallel}P^T{\parallel}}^2_{N_2^q}\Bigg\}+\frac{\widehat{\delta_C}(r;n-1)}{n(n-1)}-\frac{npr(n^2-n+qr-r){{\parallel}H{\parallel}}^2 }{(n-1) \big\{(n^2-n-r+qr)^2+p^2r^2\big\}}\geqslant\rho \end{split} |
(6) |
for any real number
Equalities hold in (5) and (6) if and only if the shape operators for the suitable tangent and normal orthonormal frames are given by
\left. {\begin{split} & A_{e_{n+1}} =\\&\left(\begin{array}{ccccccccc} h_{11}^{n+1}&0&\cdots&0&0&0&\cdots&0&0\\ 0&h_{22}^{n+1}&\cdots&0&0&0&\cdots&0&0\\ \vdots&\vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&h_{pp}^{n+1}&0&0&\cdots&0&0\\ 0&0&\cdots&0&h_{p+1p+1}^{n+1}&0&\cdots&0&0\\ 0&0&\cdots&0&0&h_{p+2p+2}^{n+1}&\cdots&0&0\\ \vdots&\vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&0&0&0&\cdots&h_{n-1n-1}^{n+1}&0\\ 0&0&\cdots&0&0&0&\cdots&0&h_{nn}^{n+1} \end{array} \right),\\ &h_{11}^{n+1} = \cdots = h_{pp}^{n+1} = pr^2f_1e_{n+1},\\&h_{p+1p+1}^{n+1} = \cdots = h_{n-1n-1}^{n+1} = (n^2-n+qr-r)rf_1e_{n+1},h_{nn}^{n+1} =\\ & n(n-1)(n^2-n+qr-r)f_1e_{n+1}, \\ & h_{ij}^{n+1} = 0, i\neq j,\\ &A_{e_{n+2}} = \cdots = A_{e_{n+m}} = 0 \end{split}} \right\} |
(7) |
where
Let
Corollary 1.1. Let
\begin{split} &\dfrac{2}{n(n-1)}\times\Big\{\frac{q{\Delta}f}{f}+\frac{p(p-1)a}{2}+\frac{q(q-1)a}{2}\Big\}+\frac{{\delta_C}(r;n-1)}{n(n-1)}-\\ &\frac{npr(n^2-n+qr-r){{\parallel}H{\parallel}}^2 }{(n-1)\big\{(n^2-n-r+qr)^2+p^2r^2\big\}}{\geqslant}\rho \\\end{split} |
(8) |
for any real number
\begin{split} &\dfrac{2}{n(n-1)}\times\bigg\{\frac{q{\Delta}f}{f}+\frac{p(p-1)a}{2}+\frac{q(q-1)a}{2}\bigg\}+\frac{\widehat{\delta_C}(r;n-1)}{n(n-1)}-\\ &\frac{npr(n^2-n+qr-r){{\parallel}H{\parallel}}^2 }{(n-1)\big\{(n^2-n-r+qr)^2+p^2r^2\big\}}{\geqslant}\rho \\[-10pt]\end{split} |
(9) |
for any real number
Equalities hold in (8) and (9) if and only if the shape operators for the suitable tangent and normal orthonormal frames are given by Eq. (7).
Moreover, let
Corollary 1.2. Let
\begin{align} {\delta_C}(r;n-1)+n(n-1)a{\ge}n(n-1)\rho \end{align} |
(10) |
\begin{align} \widehat{\delta_C}(r;n-1)+n(n-1)a{\ge}n(n-1)\rho \end{align} |
(11) |
Equalities hold in (10) and (11) if and only if
Remark: Corollary 1.2 is Theorem 2.1, and Corollary 3.1 in Ref. [5].
Let
\left. {\begin{split} &\widetilde{\nabla}_XY = {\nabla}_XY+h(X,Y) \\ &\widetilde{\nabla}_XN = -A_NX+\nabla_X^{\perp}N \end{split}} \right\} |
(12) |
for vector fields
\begin{align} \tilde{g}(h(X,Y),N) = g(A_NX,Y) \end{align} |
(13) |
where
\begin{split} &R(X,Y,Z,W) = \widetilde{R}(X,Y,Z,W)+\tilde{g}(h(X,Z),h(Y,W))-\\&\tilde{g}(h(X,W),h(Y,Z)) \\[-10pt]\end{split} |
(14) |
for any vector field
Let
\begin{align} H(x) = \frac{1}{n}{\sum\limits_{\alpha = n+1}^{m}}\left( {{\sum\limits_{i = 1}^{n}}h_{{i}{i}}^{\alpha}} \right)e_{\alpha} \end{align} |
(15) |
The squared mean curvature of the submanifold
\begin{align} {{\parallel}H{\parallel}}^2 = \frac{1}{n^2}{\sum\limits_{\alpha = n+1}^{m}}\left( {{\sum\limits_{i = 1}^{n}}h_{ii}^{\alpha}} \right)^2 \end{align} |
(16) |
Also, we set
\left. {\begin{array}{r}
h_{ij}^{\alpha} =\tilde{g}(h(e_i,e_j),e_{\alpha})\\ {{\parallel}h{\parallel}}^2 = {\sum\limits_{\alpha = n+1}^{m}} \ {\sum\limits_{i,j = 1}^{n}}\tilde{g}(h(e_{i},e_{j}),e_\alpha)^2
\end{array}} \right\} |
(17) |
Let
\begin{align} \tau(x) = \sum\limits_{1{\le}{i}<{j}{\le}n}K(e_{i}{\wedge}e_{j}) \end{align} |
(18) |
and the normalized scalar curvature
\begin{align} \rho(x) = \frac{2\tau(x)}{n(n-1)} \end{align} |
(19) |
The Casorati curvature
\begin{align} {\cal{C}} = \frac{1}{n}\sum\limits_{\alpha = n+1}^{m}{\sum\limits_{i,j = 1}^{n}}(h_{ij}^{\alpha})^2 \end{align} |
(20) |
If
\begin{align} \tau(L) = \sum\limits_{1{\le}{i}<{j}{\le}l}K(e_{i}{\wedge}e_{j}) \end{align} |
(21) |
and the Casorati curvature of the subspace
\begin{align} {\cal{C}}(L) = \frac{1}{l}\sum\limits_{\alpha = n+1}^{m}{\sum\limits_{i,j = 1}^{l}}(h_{ij}^{\alpha})^2 \end{align} |
(22) |
The generalized normalized
\begin{split} &[\delta_C(r;n-1)]_x = r{\cal{C}}_x+\frac{(n-1)(n+r)(n^2-n-r)}{rn}\inf\{{\cal{C}}(L)|L: {\rm{a}} \;\\& {\rm{hyperplane}} \;\; {\rm{of}} \;\; T_xM^n \} \\[-10pt]\end{split} |
(23) |
if
\begin{split} &[\widehat{\delta_C}(r;n-1)]_x = r{\cal{C}}_x-\frac{(n-1)(n+r)(r-n^2+n)}{rn}\sup\{{\cal{C}}(L)|L: {\rm{a}} \;\\& {\rm{hyperplane}} \;\; {\rm{of}} \;\; T_xM^n \} \\[-10pt]\end{split} |
(24) |
if
By Gauss equation, we get
\begin{align} K(e_{i}{\wedge}e_{j}) = \widetilde{K}(e_{i}{\wedge}e_{j})+\sum\limits_{\alpha = n+1}^{m}(h_{{i}{i}}^{\alpha}h_{jj}^{\alpha}-{(h_{ij}^{\alpha})}^2) \end{align} |
(25) |
where
\begin{split} \tau(N_1^p)& = {\sum\limits_{\alpha = n+1}^{m}} \ {\sum\limits_{1{\le}i<j{\le}p}}(h_{ii}^{\alpha}h_{jj}^{\alpha}-(h_{ij}^{\alpha})^2)+\tilde{\tau}(N_1^p) =\\ & \frac{p(p-1)a}{2}+b(p-1){{\parallel}P^T{\parallel}}^2_{N_1^p}+{\sum\limits_{\alpha = n+1}^{m}} \ {\sum\limits_{1{\le}i<j{\le}p}}(h_{ii}^{\alpha}h_{jj}^{\alpha}-(h_{ij}^{\alpha})^2) \end{split} |
(26) |
\begin{split} \tau(N_2^q)& = {\sum\limits_{\alpha = n+1}^{m}} \ {\sum\limits_{p+1{\le}s<t{\le}n}}(h_{ss}^{\alpha}h_{tt}^{\alpha}-(h_{st}^{\alpha})^2)+\tilde{\tau}(N_2^q) =\\ & \frac{q(q-1)a}{2}+b(q-1){{\parallel}P^T{\parallel}}^2_{N_2^q}+{\sum\limits_{\alpha = n+1}^{m}} \ {\sum\limits_{p+1{\le}s<t{\le}n}}(h_{ss}^{\alpha}h_{tt}^{\alpha}-(h_{st}^{\alpha})^2) \end{split} |
(27) |
where
Definition 2.1. For the differential function
\begin{align} &g({\nabla}f,X) = X(f) \end{align} |
(28) |
\begin{align} &{\Delta}f = \sum\limits_{i = 1}^{n}(({\nabla}_{e_{i}}e_{i})f-e_{i}e_{i}f) \end{align} |
(29) |
for any vector field
Lemma 2.1.[9] Let
\begin{align} {\sum\limits_{l = 1}^{p}}{\sum\limits_{k = p+1}^{n}}K(e_{l}{\wedge}{e_{k}}) = \frac{q{\Delta}f}{f} = q({\Delta}{\ln}f-{{\parallel}{{\nabla}{\ln}f}{\parallel}}^2) \end{align} |
(30) |
Lemma 2.2.[10] Let
\begin{align} \mathop{{\rm{min}}}\limits_{x{\in}N_1}\varphi(x) \end{align} |
(31) |
If
\begin{align} \Lambda(X,Y) = {\rm{Hess}}_{\varphi}(X,Y)+\bar{g}\big(h_1(X,Y),({\rm{grad}} \ \varphi)(x_0)\big) \end{align} |
(32) |
is positive semi-definite, where
Proof of Theorem 1.1 From Eqs.
\begin{split} &\tau{(x)} = \sum\limits_{l = 1}^{p}\sum\limits_{k = p+1}^{n}K(e_l{\wedge}e_k)+\sum\limits_{1{\le}i<j{\le}p}K(e_i{\wedge}e_j)+\sum\limits_{p+1{\le}s<t{\le}n}K(e_s{\wedge}e_t) =\\ &\frac{q{\Delta}f}{f}+\frac{p(p-1)a}{2}+b(p-1){{\parallel}P^T{\parallel}}^2_{N_1^p}+\frac{q(q-1)a}{2}+b(q-1){{\parallel}P^T{\parallel}}^2_{N_2^q}+\\ &{\sum\limits_{\alpha = n+1}^{m}}\ {\sum\limits_{1{\le}i<j{\le}p}}(h_{ii}^{\alpha}h_{jj}^{\alpha}-(h_{ij}^{\alpha})^2)+{\sum\limits_{\alpha = n+1}^{m}}\ {\sum\limits_{p+1{\le}s<t{\le}n}}(h_{ss}^{\alpha}h_{tt}^{\alpha}-(h_{st}^{\alpha})^2) \end{split} |
(33) |
We define the following quadratic polynomial
\begin{split} {\cal{P}} = &r{{\cal{C}}}+\frac{(n-1)(n+r)(n^2-n-r)}{nr}{{\cal{C}}(L)}-2{\tau} +2\times\Big\{\frac{q{\Delta}f}{f}+\\ &\frac{p(p-1)a}{2}+b(p-1){{\parallel}P^T{\parallel}}^2_{N_1^p}+\frac{q(q-1)a}{2}+b(q-1){{\parallel}P^T{\parallel}}^2_{N_2^q}\Big\} \end{split} |
(34) |
where
\begin{align} {\cal{P}} = &\frac{r}{n}{\sum\limits_{\alpha = n+1}^{m}} \ {\sum\limits_{i,j = 1}^{n}}(h_{ij}^{\alpha})^2+\frac{(n+r)(n^2-n-r)}{nr}{\sum\limits_{\alpha = n+1}^{m}} \ {\sum\limits_{i,j = 1}^{n-1}}(h_{ij}^{\alpha})^2-\\ &2{\sum\limits_{\alpha = n+1}^{m}} \ {\sum\limits_{1{\leqslant}i<j{\leqslant}p}}(h_{ii}^{\alpha}h_{jj}^{\alpha}-(h_{ij}^{\alpha})^2)-2{\sum\limits_{\alpha = n+1}^{m}} \ {\sum\limits_{p+1{\leqslant}s<t{\leqslant}n}}(h_{ss}^{\alpha}h_{tt}^{\alpha}-(h_{st}^{\alpha})^2){\geqslant}\\
&\frac{n^2-n+nr-2r}{r}{\sum\limits_{\alpha = n+1}^{m}} \ {\sum\limits_{i = 1}^{n-1}}(h_{ii}^{\alpha})^2+\frac{r}{n}{\sum\limits_{\alpha = n+1}^{m}}(h_{nn}^{\alpha})^2-\\ &2{\sum\limits_{\alpha = n+1}^{m}} \ {\sum\limits_{1{\leqslant}i<j{\leqslant}p}}h_{ii}^{\alpha}h_{jj}^{\alpha}-2{\sum\limits_{\alpha = n+1}^{m}} \ {\sum\limits_{p+1{\leqslant}s<t{\leqslant}n}}h_{ss}^{\alpha}h_{tt}^{\alpha} \end{align} \\[-12pt] |
(35) |
We consider the quadratic forms
\begin{align} \varphi_{\alpha}:{\mathbb{R}}^n{\rightarrow}{\mathbb{R}},\qquad \alpha = n+1,n+2,\cdots,m \end{align} |
(36) |
defined by
\begin{split} \varphi_{\alpha}{(h_{11}^{\alpha},{\cdots},h_{nn}^{\alpha})} = &\frac{n^2-n+nr-2r}{r}{\sum\limits_{i = 1}^{n-1}}(h_{ii}^{\alpha})^2+\frac{r}{n}(h_{nn}^{\alpha})^2-\\ &2{\sum\limits_{1{\leqslant}i<j{\leqslant}p}}h_{ii}^{\alpha}h_{jj}^{\alpha} -2{\sum\limits_{p+1{\leqslant}s<t{\leqslant}n}}h_{ss}^{\alpha}h_{tt}^{\alpha} \end{split} |
(37) |
Then by Eqs.
\begin{align} {\cal{P}}{\geqslant}\sum\limits_{\alpha = n+1}^{m}\varphi_{\alpha} \end{align} |
(38) |
Next, for
\begin{align} \min{\varphi_{\alpha}},\qquad {\rm{subject}} \ \ {\rm{to}} \qquad \varGamma :h_{11}^{\alpha}+h_{22}^{\alpha}+{\cdots}+h_{nn}^{\alpha} = K^{\alpha} \end{align} |
(39) |
where
\left. {\begin{array}{r}
\dfrac{{\partial}\varphi_{\alpha}}{{\partial}h_{11}^{\alpha}} = \dfrac{2(n+r)(n-1)}{r}h_{11}^{\alpha}-2{\sum\nolimits_{i = 1}^{p}}h_{ii}^{\alpha},\\ \vdots\\ \dfrac{{\partial}\varphi_{\alpha}}{{\partial}h_{pp}^{\alpha}} = \dfrac{2(n+r)(n-1)}{r}h_{pp}^{\alpha}-2{\sum\nolimits_{i = 1}^{p}}h_{ii}^{\alpha}\\ \dfrac{{\partial}\varphi_{\alpha}}{{\partial}h_{{p+1}{p+1}}^{\alpha}} = \dfrac{2(n+r)(n-1)}{r}h_{{p+1}{p+1}}^{\alpha}-2{\sum\nolimits_{s = p+1}^{n}}h_{ss}^{\alpha}\\ \vdots\\ \dfrac{{\partial}\varphi_{\alpha}}{{\partial}h_{{n-1}{n-1}}^{\alpha}} = \dfrac{2(n+r)(n-1)}{r}h_{{n-1}{n-1}}^{\alpha}-2{\sum\nolimits_{s = p+1}^{n}}h_{ss}^{\alpha}\\ \dfrac{{\partial}\varphi_{\alpha}}{{\partial}h_{nn}^{\alpha}} = \dfrac{2({n+r})}{n}h_{nn}^{\alpha}-2{\sum\nolimits_{s = p+1}^{n}}h_{ss}^{\alpha}
\end{array}} \right\} |
(40) |
Applying Lemma
From Eq.
\left. {\begin{array}{r}
h_{11}^{\alpha} = {\cdots} = h_{pp}^{\alpha} = \dfrac{pr^2}{(n^2-n-r+qr)^2+p^2r^2}K^{\alpha}\\
h_{{p+1}{p+1}}^{\alpha} = {\cdots} = h_{{n-1}{n-1}}^{\alpha} = \dfrac{(n^2-n+qr-r)r}{(n^2-n-r+qr)^2+p^2r^2}K^{\alpha}\\
h_{nn}^{\alpha} = \dfrac{n(n-1)(n^2-n+qr-r)}{(n^2-n-r+qr)^2+p^2r^2}K^{\alpha}
\end{array}} \right\} |
(41) |
We fixed an arbitrary point
\begin{align} \Lambda(X,Y) = {\rm{Hess}}_{\varphi_{\alpha}}(X,Y)+g(h'(X,Y),({\rm{grad}} \ \varphi_{\alpha})(x)) \end{align} |
(42) |
where
By Eq.
\left. {\begin{array}{r}
\dfrac{{\partial}^2{\varphi_{\alpha}}}{{\partial}(h_{ii}^{\alpha})^2} = \dfrac{2(n+r)(n-1)-2r}{r} \\ \dfrac{{\partial}^2{\varphi_{\alpha}}}{{\partial}h_{ii}^{\alpha}{\partial}h_{jj}^{\alpha}} = -2\\ \dfrac{{\partial}^2{\varphi_{\alpha}}}{{\partial}h_{ii}^{\alpha}{\partial}h_{tt}^{\alpha}} = 0\\ \dfrac{{\partial}^2{\varphi_{\alpha}}}{{\partial}(h_{ss}^{\alpha})^2} = \dfrac{2(n+r)(n-1)-2r}{r}\\ \dfrac{{\partial}^2{\varphi_{\alpha}}}{{\partial}h_{ss}^{\alpha}{\partial}h_{tt}^{\alpha}} = -2\\ \dfrac{{\partial}^2{\varphi_{\alpha}}}{{\partial}(h_{nn}^{\alpha})^2} = \dfrac{2r}{n}
\end{array}} \right\} |
(43) |
Note that
\begin{align} ({\rm{Hess}}_{\varphi_{\alpha}})_{ij} = (\varphi_{\alpha})_{i,j} = \frac{\partial^2\varphi_{\alpha}}{{\partial}h_{ii}^{\alpha}{\partial}h_{jj}^{\alpha}} -\frac{{\partial}\varphi_{\alpha}}{{\partial}h_{kk}^{\alpha}}\varGamma_{ij}^k \end{align} |
(44) |
where
\begin{align} \varGamma_{ij}^k = \frac{1}{2}g^{kl}\left( {\frac{{\partial}g_{il}}{{\partial}h_{jj}^{\alpha}}+\frac{{\partial}g_{lj}}{{\partial}h_{ii}^{\alpha}} -\frac{{\partial}g_{ij}}{{\partial}h_{ll}^{\alpha}}} \right) \end{align} |
(45) |
Since
\begin{align} ({\rm{Hess}}_{\varphi_{\alpha}})_{ij} = (\varphi_{\alpha})_{i,j} = \frac{\partial^2\varphi_{\alpha}}{{\partial}h_{ii}^{\alpha}{\partial}h_{jj}^{\alpha}} \end{align} |
(46) |
The Hessian matrix of
\begin{align} {\rm{Hess}}_{\varphi_{\alpha}} = \left(\begin{array}{cccc ccccc} \dfrac{2(n+r)(n-1)-2r}{r}&{\cdots}&-2&0&0&{\cdots}&0\\ \vdots&\ddots&\vdots&\vdots&\vdots&\vdots&\vdots\\ -2&{\cdots}&\dfrac{2(n+r)(n-1)-2r}{r}&0&{\cdots}&0&0\\ 0&{\cdots}&0&\dfrac{2(n+r)(n-1)-2r}{r}&{\cdots}&-2&-2\\ \vdots&\ddots&\vdots&\vdots&{\ddots}&\vdots&\vdots\\ 0&{\cdots}&0&-2&{\cdots}&\dfrac{2(n+r)(n-1)-2r}{r}&-2\\ 0&{\cdots}&0&-2&{\cdots}&-2&\dfrac{2r}{n} \end{array} \right) \end{align} |
(47) |
As
\begin{align} {\rm{(a)}}\, {\rm{Hess}}_{\varphi_{\alpha}} = \left(\begin{array}{c} 2r \end{array} \right),\quad {\rm{(b)}}\, {\rm{Hess}}_{\varphi_{\alpha}} = \left(\begin{array}{c} -2 \end{array} \right) \end{align} |
(48) |
Since
\begin{align} {\rm{Hess}}_{\varphi_{\alpha}}(X,X) = 0 \end{align} |
(49) |
\begin{split} &{\rm{(a) \, Hess}}_{\varphi_{\alpha}} = \left(\begin{array}{cc} \dfrac{4}{r}&-2\\ -2&\dfrac{4}{r} \end{array} \right),\quad {\rm{(b)\, Hess}}_{\varphi_{\alpha}} = \left(\begin{array}{cc} \dfrac{4}{r}&0\\ 0&r \end{array} \right),\quad {\rm{(c) \, Hess}}_{\varphi_{\alpha}} = \left(\begin{array}{cc} \dfrac{4}{r}&-2 -2r \end{array} \right)\\[-10pt] \end{split} |
(50) |
For
\begin{aligned} {\rm{Hess}}_{\varphi_{\alpha}}(X,X) = \dfrac{4+2r}{r}(X_1^2+X_2^2)-2(X_1+X_2)^2 =\dfrac{4+2r}{r}(X_1^2+X_2^2)\geqslant 0\end{aligned} |
(51) |
For
\begin{split} {\rm{Hess}}_{\varphi_{\alpha}}(X,X) =& \frac{2(n+r)(n-1)}{r}(\sum\limits_{i = 1}^nX_i^2)-2(\sum\limits_{i = 1}^nX_i)^2 = \frac{2(n+r)(n-1)}{r}(\sum\limits_{i = 1}^nX_i^2)\geqslant 0 \end{split} |
(52) |
When
\begin{align} &A = \left(\begin{array}{cccc ccccc} \dfrac{2(n+r)(n-1)-2r}{r}&\;\;\;-2&\;\;\; {\cdots}&\;\;\;-2\\ -2&\;\;\; \dfrac{2(n+r)(n-1)-2r}{r}&\;\;\; {\cdots}&\;\;\;-2\\ \vdots&\;\;\;\vdots&\;\;\; \ddots&\;\;\; \vdots\\ -2&\;\;\;-2&\;\;\; {\cdots}&\;\;\; \dfrac{2(n+r)(n-1)-2r}{r} \end{array} \right),\\ &B = \left(\begin{array}{ccccc} \dfrac{2(n+r)(n-1)-2r}{r}&-2&{\cdots}&-2&-2\\ -2&\dfrac{2(n+r)(n-1)-2r}{r}&{\cdots}&-2&-2\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ -2&-2&{\cdots}&\dfrac{2(n+r)(n-1)-2r}{r}&-2\\ -2&-2&{\cdots}&-2&\dfrac{2r}{n} \end{array} \right) \end{align} |
(53) |
Note that
\begin{aligned} 0 |\lambda E-A| =\\& \Bigg[\lambda-\frac{2(n+r)(n-1)}{r}\Bigg]^{p-1}\Bigg(\lambda-\frac{2(n+r)(n-1)-2pr}{r}\Bigg) =\Bigg[\lambda-\frac{2(n+r)(n-1)}{r}\Bigg]^{p-1}\Bigg(\lambda-\frac{2n(n-1)+2(n-1-p)r}{r}\Bigg) \end{aligned} |
(54) |
Thus, all eigenvalues of
Since
\begin{align} B = \left(\begin{array}{c} \dfrac{2r}{n} \end{array} \right) \end{align} |
(55) |
\begin{split} 0 = |\lambda E-B|& = \bigg[\lambda-\frac{2(n+r)(n-1)}{r}\bigg]^{q-2}\Big[\bigg(\lambda-\frac{2(n+r)}{n}\bigg) \bigg(\lambda-\frac{2(n+r)(n-1)-2(q-1)r}{r}\bigg)-2\bigg(-\lambda+\frac{2(n+r)(n-1)}{r}\bigg)\Bigg] =\\ & \bigg[\lambda-\frac{2(n+r)(n-1)}{r}\bigg]^{q-2}\Bigg[\lambda^2-\bigg(\frac{2(n+r)}{n}+\frac{2(n+r)(n-1)-2(q-1)r}{r}-2\bigg)\lambda+\\ &\frac{2(n+r)}{n}\times\frac{2(n+r)(n-1)-2(q-1)r}{r}-\frac{4(n+r)(n-1)}{r}\Bigg] =\\ & \bigg[\lambda-\frac{2(n+r)(n-1)}{r}\bigg]^{q-2}\Bigg[\lambda^2-\bigg(\frac{2r}{n}+\frac{2(n+r)(n-1)-2(q-1)r}{r}\bigg)\lambda+\frac{4(n+r)}{r}\times\frac{rp}{n}\Bigg] \end{split} |
(56) |
Since
\begin{align} \lambda^2-\big(\frac{2r}{n}+\frac{2(n+r)(n-1)-2(q-1)r}{r}\big)\lambda+\frac{4(n+r)}{r}\times\frac{rp}{n} = 0 \end{align} |
(57) |
we have
\begin{split} &\lambda_{n-1}\lambda_n = \frac{4(n+r)}{r}\times\frac{rp}{n}\geqslant0,\lambda_{n-1}+\lambda_n =\\ & \frac{2r}{n}+\frac{2(n+r)(n-1)-2(q-1)r}{r} = \frac{2r}{n}+\frac{2n(n-1)+2pr}{r}>0 \end{split} |
(58) |
that is,
\begin{align} \lambda_{n-1}\geqslant0,\quad \lambda_n>0 \qquad {\rm{or}} \qquad \lambda_{n-1}>0,\quad \lambda_n\geqslant0 \end{align} |
(59) |
We prove that all eigenvalues of
Combining
\begin{align} \Lambda(X,X)\geqslant {\rm{Hess}}_{\varphi_{\alpha}}(X,X)\geqslant0 \end{align} |
(60) |
Hence, by Eq.
\begin{split} \varphi_{\alpha}{\geqslant}&\frac{(n^2-n+nr-2r)\big[p^3r^3+(q-1)r(n^2-n+qr-r)^2\big] (K^{\alpha})^2}{\big\{(n^2-n-r+qr)^2+p^2r^2\big\}^2}+ \\ &\frac{rn(n-1)^2(n^2-n+qr-r)^2(K^{\alpha})^2}{\big\{(n^2-n-r+qr)^2+p^2r^2\big\}^2}-\frac{{p(p-1)(pr^2)^2}(K^{\alpha})^2}{\big\{(n^2-n-r+qr)^2+p^2r^2\}^2}-\\ &\frac{\big\{(q-1)(q-2)(n^2-n+qr-r)^2r^2+2(n^2-n+qr-r)^2rn(n-1)(q-1)\big\}(K^{\alpha})^2}{\big\{(n^2-n-r+qr)^2+p^2r^2\}^2} =\\ &\frac{pr(n^2-n+qr-r)^3(K^{\alpha})^2}{\big\{(n^2-n-r+qr)^2+p^2r^2\big\}^2}+\frac{p^3r^3(n^2-n+qr-r)(K^{\alpha})^2}{\big\{(n^2-n-r+qr)^2+p^2r^2\big\}^2} =\\&\frac{pr(n^2-n+qr-r)\big\{(n^2-n-r+qr)^2+p^2r^2\big\}(K^{\alpha})^2 }{\big\{(n^2-n-r+qr)^2+p^2r^2\}^2} =\\ &\frac{pr(n^2-n+qr-r)(K^{\alpha})^2 }{(n^2-n-r+qr)^2+p^2r^2} \end{split} |
(61) |
We divide the proof of Theorem
Case 1:
\begin{array}{c} {\cal{P}}{\geqslant}{\displaystyle \sum\limits_{\alpha = n+1}^{m}}\dfrac{pr(n^2-n+qr-r)(K^{\alpha})^2 }{(n^2-n-r+qr)^2+p^2r^2} = \dfrac{pr(n^2-n+qr-r)n^2{{\parallel}H{\parallel}}^2 }{(n^2-n-r+qr)^2+p^2r^2}\end{array} |
(62) |
By Eqs.
\begin{split} &2\times\Bigg\{\dfrac{q{\Delta}f}{f}+\dfrac{p(p-1)a}{2}+b(p-1){{\parallel}P^T{\parallel}}^2_{N_1^p}+\dfrac{q(q-1)a}{2}+b(q-1){{\parallel}P^T{\parallel}}^2_{N_2^q}\Bigg\}+r{{\cal{C}}}+\\&\dfrac{(n-1)(n+r)(n^2-n-r)}{nr}{{\cal{C}}}(L){\geqslant}2{\tau}+\dfrac{pr(n^2-n+qr-r)n^2{{\parallel}H{\parallel}}^2 }{(n^2-n-r+qr)^2+p^2r^2} \end{split} |
(63) |
Taking the infimum over all tangent hyperplanes
\begin{split} &\dfrac{2}{n(n-1)}\times\Bigg\{\dfrac{q{\Delta}f}{f}+\dfrac{p(p-1)a}{2}+b(p-1){{\parallel}P^T{\parallel}}^2_{N_1^p}+\dfrac{q(q-1)a}{2}+b(q-1){{\parallel}P^T{\parallel}}^2_{N_2^q}\Bigg\}+\\&\dfrac{{\delta_C}(r;n-1)}{n(n-1)}-\dfrac{npr(n^2-n+qr-r){{\parallel}H{\parallel}}^2 }{(n-1)\bigg\{(n^2-n-r+qr)^2+p^2r^2\bigg\}}{\geqslant}\rho \end{split} |
(64) |
Case 2:
\begin{split} &\dfrac{2}{n(n-1)}\times\Bigg\{\dfrac{q{\Delta}f}{f}+\dfrac{p(p-1)a}{2}+b(p-1){{\parallel}P^T{\parallel}}^2_{N_1^p}+\dfrac{q(q-1)a}{2}+b(q-1){{\parallel}P^T{\parallel}}^2_{N_2^q}\Bigg\}+\\&\dfrac{{\widehat{\delta_C}}(r;n-1)}{n(n-1)}-\dfrac{npr(n^2-n+qr-r){{\parallel}H{\parallel}}^2 }{(n-1)\bigg\{(n^2-n-r+qr)^2+p^2r^2\bigg\}}{\geqslant}\rho \end{split} |
(65) |
Equalities hold in (64) and (65) at a point
\left. {\begin{array}{r}
h_{11}^{\alpha} = {\cdots} = h_{pp}^{\alpha} = \dfrac{pr^2}{(n^2-n-r+qr)^2+p^2r^2}K^{\alpha}\\ h_{{p+1}{p+1}}^{\alpha} = {\cdots} = h_{{n-1}{n-1}}^{\alpha} = \dfrac{(n^2-n+qr-r)r}{(n^2-n-r+qr)^2+p^2r^2}K^{\alpha}\\ h_{nn}^{\alpha} = \dfrac{n(n-1)(n^2-n+qr-r)}{(n^2-n-r+qr)^2+p^2r^2}K^{\alpha}\\ h_{ij}^{\alpha} = 0 , \qquad i{\ne}j
\end{array}} \right\} |
(66) |
By choosing an orthonormal basis such that
\left. {\begin{array}{r} h(e_1,e_1) = \cdots = h(e_p,e_p) = pr^2f_1e_{n+1},\\ h(e_{p+1},e_{p+1}) = \cdots = h(e_{n-1},e_{n-1}) = (n^2-n+qr-r)rf_1e_{n+1},\\ h(e_n,e_n) = n(n-1)(n^2-n+qr-r)f_1e_{n+1},\\ h(e_i,e_j) = 0,\qquad i\neq j \end{array} } \right\} |
(67) |
where
This work was supported by the National Natural Science Foundation of China (12026262).
The authors declare that they have no conflict of interest.
The authors declare that they have no conflict of interest.
[1] |
Chen B Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math., 1993, 60: 568–578. DOI: 10.1007/BF01236084
|
[2] |
Chen B Y. A Riemannian invariant and its applications to submanifold theory. Results in Mathematics, 1995, 27: 17–26. DOI: 10.1007/BF03322265
|
[3] |
Casorati F. Mesure de la courbure des surfaces suivant l'idée commune.: Ses rapports avec les mesures de courbure gaussienne et moyenne. Acta. Math., 1890, 14: 95–110. DOI: 10.1007/BF02413317
|
[4] |
Decu S, Haesen S, Verstraelen L. Optimal inequalities involving Casorati curvatures. Bull.Transilv. Univ. Brasov Ser. B, 2007, 14: 85–93.
|
[5] |
Decu S, Haesen S, Verstraelen L. Optimal inequalities characterising quasi-umbilical submanifolds. J. Inequal. Pure and Appl. Math., 2008, 9: 79.
|
[6] |
Park K S. Inequalities for the Casorati curvatures of real hypersurfaces in some Grassmannians. Taiwanese J. Math., 2018, 22: 63–77. DOI: 10.11650/tjm/8124
|
[7] |
Choudhary M A, Blaga A M. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in metallic Riemannian space forms. J. Geom., 2020, 111: 39. DOI: 10.1007/s00022-020-00552-5
|
[8] |
Chen B Y, Yano K. Hypersurfaces of a conformally flat space. Tensor, N. S., 1972, 26: 318–322.
|
[9] |
Chen B Y. Another general inequality for CR-warped products in complex space forms. Hokkaido Math. J., 2003, 32: 415–444.
|
[10] |
Oprea T. Chen's inequality in the Lagrangian case. Colloq. Math., 2007, 108: 163–169. DOI: 10.4064/cm108-1-15
|
[11] |
Vîlcu G E. An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvature. J. Math. Anal. Appl., 2018, 465: 1209–1222. DOI: 10.1016/j.jmaa.2018.05.060
|
[1] |
Chen B Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math., 1993, 60: 568–578. DOI: 10.1007/BF01236084
|
[2] |
Chen B Y. A Riemannian invariant and its applications to submanifold theory. Results in Mathematics, 1995, 27: 17–26. DOI: 10.1007/BF03322265
|
[3] |
Casorati F. Mesure de la courbure des surfaces suivant l'idée commune.: Ses rapports avec les mesures de courbure gaussienne et moyenne. Acta. Math., 1890, 14: 95–110. DOI: 10.1007/BF02413317
|
[4] |
Decu S, Haesen S, Verstraelen L. Optimal inequalities involving Casorati curvatures. Bull.Transilv. Univ. Brasov Ser. B, 2007, 14: 85–93.
|
[5] |
Decu S, Haesen S, Verstraelen L. Optimal inequalities characterising quasi-umbilical submanifolds. J. Inequal. Pure and Appl. Math., 2008, 9: 79.
|
[6] |
Park K S. Inequalities for the Casorati curvatures of real hypersurfaces in some Grassmannians. Taiwanese J. Math., 2018, 22: 63–77. DOI: 10.11650/tjm/8124
|
[7] |
Choudhary M A, Blaga A M. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in metallic Riemannian space forms. J. Geom., 2020, 111: 39. DOI: 10.1007/s00022-020-00552-5
|
[8] |
Chen B Y, Yano K. Hypersurfaces of a conformally flat space. Tensor, N. S., 1972, 26: 318–322.
|
[9] |
Chen B Y. Another general inequality for CR-warped products in complex space forms. Hokkaido Math. J., 2003, 32: 415–444.
|
[10] |
Oprea T. Chen's inequality in the Lagrangian case. Colloq. Math., 2007, 108: 163–169. DOI: 10.4064/cm108-1-15
|
[11] |
Vîlcu G E. An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvature. J. Math. Anal. Appl., 2018, 465: 1209–1222. DOI: 10.1016/j.jmaa.2018.05.060
|
ISSN 0253-2778
CN 34-1054/N
Copyright © Editorial Office of JUSTC, All Rights Reserved. 皖ICP备05002528号
Supported by: Beijing Renhe Information Technology Co., Ltd.