[1] |
Lauritzen S L. Graphical Models. London: Clarendon Press, 1996.
|
[2] |
Belilovsky E, Varoquaux G, Blaschko M B. Testing for differences in Gaussian graphical models: Applications to brain connectivity. https://arxiv.org/abs/1512.08643.
|
[3] |
Yuan M, Lin Y. Model selection and estimation in the Gaussian graphical model. Biometrika, 2007, 94: 19–35. doi: 10.1093/biomet/asm018
|
[4] |
Fan J Q, Yang F, Wu Y. Network exploration via the adaptive lasso and scad penalties. The Annals of Applied Statistics, 2009, 3 (2): 521–541. doi: 10.1214/08-AOAS215SUPP
|
[5] |
Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical Lasso. Biostatistics, 2007, 9: 432–441. doi: 10.1093/biostatistics/kxm045
|
[6] |
Meinshausen N, Bühlmann P. High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 2006, 34: 1436–1462. doi: 10.1214/009053606000000281
|
[7] |
Cai T T, Liu W, Zhou H H. Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation. The Annals of Statistics, 2016, 44: 455–488. doi: 10.1214/13-AOS1171
|
[8] |
Peng J, Wang P, Zhou N, et al. Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 2009, 104: 735–746. doi: 10.1198/jasa.2009.0126
|
[9] |
Fan Y, Lv J. Innovated scalable efficient estimation in ultra-large Gaussian graphical models. The Annals of Statistics, 2016, 44: 2098–2126. doi: 10.1214/15-AOS1416
|
[10] |
Zhang C H, Zhang S S. Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society, 2014, 76: 217–242. doi: 10.1111/rssb.12026
|
[11] |
Jankov J, van de Geer S. Confidence intervals for high-dimensional inverse covariance estimation. Electronic Journal of Statistics, 2015, 9: 1205–1229. doi: 10.1214/15-EJS1031
|
[12] |
Jankov J, van de Geer S. Honest confidence regions and optimality in high-dimensional precision matrix estimation. Test, 2017, 26: 143–162. doi: 10.1007/s11749-016-0503-5
|
[13] |
Zhou J, Zheng Z, Zhou H, et al. Innovated scalable efficient inference for ultra-large graphical models. Statistics and Probability Letters, 2021, 173: 109085. doi: 10.1016/j.spl.2021.109085
|
[14] |
Zhang X, Cheng G. Simultaneous inference for high-dimensional linear models. Journal of the American Statistical Association, 2017, 112: 757–768. doi: 10.1080/01621459.2016.1166114
|
[15] |
Chernozhukov V, Chetverikov D, Kato K. Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. The Annals of Statistics, 2013, 41: 2786–2819. doi: 10.1214/13-AOS1161
|
[16] |
Cai T T, Liu W, Xia Y. Two-sample test of high dimensional means under dependence. Journal of the Royal Statistical Society, Series B(Statistical Methodology), 2014, 76: 349–372. doi: 10.1111/rssb.12034
|
[1] |
Lauritzen S L. Graphical Models. London: Clarendon Press, 1996.
|
[2] |
Belilovsky E, Varoquaux G, Blaschko M B. Testing for differences in Gaussian graphical models: Applications to brain connectivity. https://arxiv.org/abs/1512.08643.
|
[3] |
Yuan M, Lin Y. Model selection and estimation in the Gaussian graphical model. Biometrika, 2007, 94: 19–35. doi: 10.1093/biomet/asm018
|
[4] |
Fan J Q, Yang F, Wu Y. Network exploration via the adaptive lasso and scad penalties. The Annals of Applied Statistics, 2009, 3 (2): 521–541. doi: 10.1214/08-AOAS215SUPP
|
[5] |
Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical Lasso. Biostatistics, 2007, 9: 432–441. doi: 10.1093/biostatistics/kxm045
|
[6] |
Meinshausen N, Bühlmann P. High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 2006, 34: 1436–1462. doi: 10.1214/009053606000000281
|
[7] |
Cai T T, Liu W, Zhou H H. Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation. The Annals of Statistics, 2016, 44: 455–488. doi: 10.1214/13-AOS1171
|
[8] |
Peng J, Wang P, Zhou N, et al. Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 2009, 104: 735–746. doi: 10.1198/jasa.2009.0126
|
[9] |
Fan Y, Lv J. Innovated scalable efficient estimation in ultra-large Gaussian graphical models. The Annals of Statistics, 2016, 44: 2098–2126. doi: 10.1214/15-AOS1416
|
[10] |
Zhang C H, Zhang S S. Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society, 2014, 76: 217–242. doi: 10.1111/rssb.12026
|
[11] |
Jankov J, van de Geer S. Confidence intervals for high-dimensional inverse covariance estimation. Electronic Journal of Statistics, 2015, 9: 1205–1229. doi: 10.1214/15-EJS1031
|
[12] |
Jankov J, van de Geer S. Honest confidence regions and optimality in high-dimensional precision matrix estimation. Test, 2017, 26: 143–162. doi: 10.1007/s11749-016-0503-5
|
[13] |
Zhou J, Zheng Z, Zhou H, et al. Innovated scalable efficient inference for ultra-large graphical models. Statistics and Probability Letters, 2021, 173: 109085. doi: 10.1016/j.spl.2021.109085
|
[14] |
Zhang X, Cheng G. Simultaneous inference for high-dimensional linear models. Journal of the American Statistical Association, 2017, 112: 757–768. doi: 10.1080/01621459.2016.1166114
|
[15] |
Chernozhukov V, Chetverikov D, Kato K. Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. The Annals of Statistics, 2013, 41: 2786–2819. doi: 10.1214/13-AOS1161
|
[16] |
Cai T T, Liu W, Xia Y. Two-sample test of high dimensional means under dependence. Journal of the Royal Statistical Society, Series B(Statistical Methodology), 2014, 76: 349–372. doi: 10.1111/rssb.12034
|