Processing math: 0%

ISSN 0253-2778

CN 34-1054/N

open
Open AccessOpen Access JUSTC Mathematics Article 09 October 2024

Invariant measure for cubic Fibonacci-like polynomials

Cite this: JUSTC, 2024, 54(8): 0802
https://doi.org/10.52396/JUSTC-2023-0036
CSTR: 32290.14.JUSTC-2023-0036
More Information
  • Author Bio:

    Wenxiu Ma is currently a graduate student of University of Science and Technology of China. Her research mainly focuses on one dimensional dynamics and complex dynamics

  • Corresponding author:

    Wenxiu Ma, E-mail: mwx@mail.ustc.edu.cn

  • Received Date: March 06, 2023
  • Accepted Date: June 04, 2023
  • Available Online: October 09, 2024
  • A special class of cubic polynomials possessing decay of geometry property is studied. This class of cubic bimodal maps has generalized Fibonacci combinatorics. For maps with bounded combinatorics, we show that they have an absolutely continuous invariant measure.

    • We study the combinatorial properties of (r, t)-Fibonacci bimodal maps.
    • We construct an induced map G and show that G admits an acip.
    • We prove that for any f B, f has an acip.

Catalog

    {{if article.pdfAccess}}
    {{if article.articleBusiness.pdfLink && article.articleBusiness.pdfLink != ''}} {{else}} {{/if}}PDF
    {{/if}}
    XML

    Figure  1.   Examples of types {\cal{A}} {\cal{B}} {\cal{C}} .

    [1]
    Bruin H, Shen W, van Strien S. Invariant measure exists without a growth condition. Communications in Mathematical Physics, 2003, 241: 287–306. DOI: 10.1007/s00220-003-0928-z
    [2]
    Graczyk J, Swiatiek G. The Real Fatou Conjecture. Princeton, USA: Princeton University Press, 1998.
    [3]
    Jakobson M, Swiatiek G. Metric properties of non-renormalizable S-unimodal maps. Part I. Induced expansion and invariant measures. Ergodic Theory and Dynamical Systems, 1994, 14: 721–755. DOI: 10.1017/S0143385700008130
    [4]
    Ji H, Li S. On the combinatorics of Fibonacci-like non-renormalizable maps. Commun. Math. Stat., 2020, 8: 473–496. DOI: 10.1007/s40304-020-00210-x
    [5]
    Ji H, Ma W. Decay of geometry for a class of cubic polynomials. arXiv: 2304.10689, 2023.
    [6]
    Keller G, Nowicki T. Fibonacci maps re(al)-visited. Ergodic Theory and Dynamical Systems, 1995, 15: 99–120. DOI: 10.1017/S0143385700008269
    [7]
    Kozlovski O, Shen W, van Strien S. Rigidity for real polynomials. Annals of Mathematics, 2007, 165 (3): 749–841. DOI: 10.4007/annals.2007.165.749
    [8]
    Lyubich M, Milnor J. The Fibonacci unimodal map. J. Amer. Math. Soc., 1993, 6 (2): 425–457. DOI: 10.1090/S0894-0347-1993-1182670-0
    [9]
    Lyubich M. Combinatorics, geometry and attractors of quasi-quadratic maps. Annals of Mathematics, 1994, 140: 345–404. DOI: 10.2307/2118604
    [10]
    Mañé R. Hyperbolicity, sinks and measure in one-dimensional dynamics. Communications in Mathematical Physics, 1985, 100: 495–524. DOI: 10.1007/BF01217727
    [11]
    de Melo W, van Strien S. One-Dimensional Dynamics. Berlin: Springer-Verlag, 1993.
    [12]
    Shen W. Decay of geometry for unimodal maps: An elementary proof. Annals of Mathematics, 2006, 163: 383–404. DOI: 10.4007/annals.2006.163.383
    [13]
    Straube E. On the existence of invariant absolutely continuous measures. Communications in Mathematical Physics, 1981, 81: 27–30. DOI: 10.1007/BF01941798
    [14]
    Swiatek G, Vargas E. Decay of geometry in the cubic family. Ergodic Theory and Dynamical Systems, 1998, 18: 1311–1329. DOI: 10.1017/S0143385798117558
    [15]
    Vargas E. Fibonacci bimodal maps. Discrete and Continuous Dynamical Systems, 2008, 22 (3): 807–815. DOI: 10.3934/dcds.2008.22.807

    Article Metrics

    Article views (245) PDF downloads (763) Cited by(7)>>

    Cited by

    Periodical cited type(7)

    1. Liu, T., Wang, Z., Shi, M. et al. An investigation on the wind profiles and gravity wave dynamics in MLT region based on the meteor radars from the Meridian Project. Earth and Planetary Physics, 2025, 9(1): 29-38. DOI:10.26464/epp2024044
    2. Li, J., Yi, W., Xue, X. et al. Mesospheric tide comparisons at low latitudes observed by two collocated meteor radars. Earth and Planetary Physics, 2025, 9(1): 54-68. DOI:10.26464/epp2024030
    3. Ge, S., Li, H., Zhang, S. et al. On the properties of lower mid-latitudes ionospheric scintillation observed over Chengdu, China. Advances in Space Research, 2024, 74(10): 4824-4834. DOI:10.1016/j.asr.2024.07.041
    4. Wu, K., Yi, W., Xue, X. et al. Diurnal and Seasonal Variations of Meteor Speed and Arrival Angle Observed by Mengcheng Meteor Radar. Journal of Geophysical Research: Space Physics, 2024, 129(10): e2024JA032767. DOI:10.1029/2024JA032767
    5. Reid, I.M.. Meteor Radar for Investigation of the MLT Region: A Review. Atmosphere, 2024, 15(4): 505. DOI:10.3390/atmos15040505
    6. Zeng, X., Zhong, G. Analysis of gravity wave activity during stratospheric sudden warmings in the northern hemisphere. Earth and Planetary Physics, 2024, 8(2): 415-422. DOI:10.26464/epp2024007
    7. Yi, W., Xue, X., Lu, M. et al. Mesopause temperatures and relative densities at midlatitudes observed by the Mengcheng meteor radar. Earth and Planetary Physics, 2023, 7(6): 665-674. DOI:10.26464/epp2023083

    Other cited types(0)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return