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1 Introduction

The dynamical properties of unimodal interval maps have
been extensively studied. The 'decay of geometry' property
plays an essential role in the study of quadratic dynamics.
Several results, including density of hyperbolicity and Milnor’
s attractor problem, rely on this phenomenon.

For the unimodal case, let I° > I' O I* ©.... be the principal
| In+1 |
e
cay of geometry means that u, decreases to 0 exponentially
fast for a subsequence n,. This concept first appeared in the
work of Jakobson and Swiatiek for non-renormalizable
maps with negative Schwarzian derivatives. Lyubich®,
Graczyk and Swiatiek™ solved it independently using com-
plex techniques. These proofs make elaborate use of complex
methods and do not seem to work for critical orders smaller
than 2. More recently, Shen!” used real analysis techniques to
prove the decay of geometry property for smooth unimodal
maps with a critical order of no more than 2, thus solving the
Milnor attractor problem in this case.

However, the decay of geometry loses its universality for
unimodal maps with a larger critical order, or even for mul-
timodal maps with quadratic critical points. For the unimodal
case, the typical example is the Fibonacci unimodal maps. It
is well-known that Fibonacci unimodal maps possess decay
of geometry and admit an absolutely continuous (with re-
spect to the Lebesgue measure) invariant probability measure
for critical order ¢ < 2, and have bounded geometry for critic-
al order € > 2, see Refs. [8, 6]. For multimodal maps, the real
cubic polynomial with two nondegenerate critical points does
not have uniform decay of geometry property either. A pre-
liminary investigation of this phenomenon was carried out by
Swiatiek and Vargas', who constructed two cubic polynomi-
als, one with bounded geometry and the other with decay of
geometry.

To date, multimodal maps are rarely known. The principal
nest is a useful tool when studying the geometric properties of

nest of f. The scaling factor of f'is defined as u, := De-
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interval maps, but it seems inonvenient for treating metric
problems in multimodal cases. Unlike the unimodal case, the
scaling factors fail to give distortion control of the first return
map of the principal nest. However, in Ref. [15], Vargas con-
structed the Fibonacci bimodal map using a new tool, named
'twin principal nest', which we will explain later. Our recent
work" showed that a wide class of cubic maps have the 'de-
cay of geometry' property in the sense that the ratio of twin
principal nests decreases at least exponentially fast. In this pa-
per, we concentrate on the metric properties of generalized
Fibonacci bimodal maps with uniformly bounded combinat-
orics.

1.1 Preliminaries

For convenience, (a,b) denotes the interval with endpoints «
and b, even though a > b. For example, let (2,1) refer to
(1,2). If J and J' are two intervals on the real line, by
J < J'(J<J), we mean that y < y'(y <y’) for every y € J and
y' € J'; analogously, we define a < J and a < J’ for real num-
ber a.

Denote 7=1[0,1]. A continuous map f:/— 1 is called
bimodal if:

L. f({0,1}) ={0,1};

2. there exist exactly two points ¢ <d (called turning
points) that are the local extreme of f;

3. fis strictly monotone on subintervals determined by
these points.

If the points {0,1} are fixed, then we say that the bimodal
map [ is positive, and in the case that these points are per-
muted, we say that f'is negative. Examples of bimodal maps
are parameterized families of real cubic polynomials P;, and

ab
P, given by P,(x)=ax’+bxX’+(1—-a-b)x and P, (x)=
l-ax*—bx*—(1—a-b)x. We are mainly interested in
bimodal maps that have neither periodic attractors nor wan-
dering intervals.

For Tcl, let D(T)={xel: f*(x)eT for some k > 1}.
The first entry map R, : D(T) — T is defined as x — f*(x),

where k(x) is the entry time of x into 7, i.e., the minimal pos-
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itive integer such that f**(x) € T. The map R |(D(T)NT) is
called the first return map of T. A component of D(T) is
called an entry domain of T and a component of D(T)NT is
called a return domain.

An open set J C [ is called nice if f"(0J)NnJ =0 for all
n>0.Let T c I be anice interval. Let £,(T) denote the entry
domain of T containing x.

A point x € [ is called recurrent provided x € w(x).

Let B denote the collection of C* bimodal maps f:1— 1,
which have no wandering intervals and all periodic cycles of
hyperbolic repelling. Let Crit(f) denote the set of critical
points of £; i.e., the set of points where D f vanishes. Note that
{c,d} c Crif(f). Let B* and 8~ denote the subset of positive
and negative bimodal maps, respectively, from class B. If
f € B, then there exists a fixed point p between ¢ and d; oth-
erwise, dI contains an attracting fixed point. Let p, < p, be
such that f(p) = f(p,) = p. Define I' = (p\,p), J° = (p,p,).
If f € B, we discuss three cases:

1. f'has three fixed point in (0, 1). In this case, there exists
a fixed point p in (c,d), then define I° and J° as above.

2. f has one fixed point p in (0,1) with three preimages
{p,pi,p.} specified by p <p,. If p<p <p,, define
I°=(p,p)>c and J°=(p,,p,)2d; if p, <p,<p, define
I°=(p:,py) and J° = (p,, p).

3. f'has one fixed point p in (0, 1) with only one preimage,
that is, f~'(p) = {p}. This case can be reduced to the positive
case since f? restricted on [p, 1] is always a positive bimodal
map.

Assume that both ¢ and d are recurrent. For every n > 1,
define I":=L.I"'UJ"") and J':=L,I""'UJ"") induct-
ively. The two sequences of nested intervals

I’>I'oFP>...o{ctand > J' D2 >...0{d}

are called the twin principal nest of /. The scaling factor of fis

defined as
In n
A, = max | I, Al .
|Infl| |Jn—l|

Let g, denote the first return map to "' UJ*'. The restric-
tion of g, on I" and J" are unimodal, while its restriction on
any other branches are monotone and onto "' or J'. The
first return map g, is called a central return if g,(c) e I"UJ"
or g,(d) € I'UJ"; otherwise, g, is called non-central return. In
the case when g, is non-central, let I} and J; (possibly coin-
cide) denote the first return domains intersecting
{8.(0). 8.(d)}.

Given f € 8B, fis called combinatorially symmetric if there
exists an orientation-reversing homeomorphism h: I — 1
such that ho f = foh.

Note that any combinatorially symmetric maps can be
quasisymmetrically conjugated to an odd function. Finally, let
B, denote the collection of combinatorially symmetric
bimodal maps from B with recurrent turning points satisfy-
ing w(c) = w(d). Class B, is nonempty since it contains infin-
itely renormalizable maps and Fibonacci bimodal maps.

1.2 Statement of results
Definition 1.1. A bimodal map f € B, is called (r,7)-Fibon-

0802-2

acci if:

(1) FO.fd U
i=2,3;

(2) I} and J; are defined and disjoint for all n > 1;

(3) foreachn> 1, I"UJ" c g, (I"UJ");

(4) for each n>1, (w(l)Vw@)NU'UJ™")cI"ULU
JruJr

(5) for each n>1, g,|(I"UJ") =g/ |(I"UJ") for some in-
teger r > 2;

(6) for each n>1, g,|([}UJ)) =g |([;UJ}) for some in-
teger > 1.

A pair of integers (r,7) is called admissible if there exists
(r,t)-Fibonacci bimodal maps. Actually, not all (,7) are ad-
missible; for example, there does not exist (4,2)-Fibonacci
bimodal maps. It was proven in Ref. [5] that under some con-
ditions, (r,7) is admissible (see Section 2 for detail). The ad-
missible pair (r,f) is just a simplification of Admissibility
condition A for stationary combinatorics.

Lemma 1.1. Any pair of integers (r,7) is admissible if
either 7 is even, t is odd with ¢ < r, or r is odd, t is odd with
t<r.

Suppose f'is (r,1)-Fibonacci, then we can say f has 'uni-
formly bounded combinatorics'.

According to Ref. [11], the families of real cubic polyno-
mials P!, and P, are 'full families'. Combined with the rigid-
ity theorem developed in ", we can obtain the following co-
rollary.

Corollary 1.1. For any admissible pair (r,f), there exists
exactly one (r,1)-Fibonacci bimodal map in P}, and one
(r,t)— Fibonacci bimodal map in P, .

Let B denote the class of (r,7)-Fibonacci bimodal maps in
PZh U P;h :

Theorem 1.1. © Suppose f € B, then there exist constants
C=C(f)>0and 0 <= A(f) <1 such that the scaling factor
of f decreases at least exponentially: ,(f) < CA" forall n > 1.

The main result of this paper is the following theorem.

Theorem 1.2. For any f € B, fadmits an acip u.

This paper is organized as follows. In Section 2, we study
the combinatorial properties of (r,¢)-Fibonacci bimodal maps.
In Section 3, we construct an induced map G and study the
metric properties of G. We show that G admits an acip and
prove that for any f € B, f'has an acip, which is the main res-
ult of this paper. In Section 4, we give a conclusion of this pa-
per.

while  fi(c), fi(d)e I’UJ® for

2 Combinatorics

In this section, we study the combinatorial properties of (r,1)-
Fibonacci bimodal maps. For any (r,7)-Fibonacci bimodal
map f, we can consider the map g,|(I°U J°) and rescale the in-
terval back to [0,1], which is the notion of renormalization.
Repeating this procedure is called generalized renormaliza-
tion. Comparing Ref. [2, Section 4], the analytic extension of
a generalized renormalization g, can be treated as a type
IT special box mapping. Because the maps we consider are
combinatorially symmetric, the positions of I7,J;,I" and J"
have some constraints. Hence, we define 3 types of g,, the
types of g, are similar.

o Type A: if g(I)=J", g(I)CJ) and g(J)="1,
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e Type B: if g())=J° gU)cl° and g () =1,
&apcJy

e Type C: if g()=1I°, g(I)HcJ’ and g (J))=J°
s(Jycr.

Let us subdivide each type A, B and C in subtypes A’ BY
and C" with i, j € {+,—}, where i = + or i = — if the non-cent-
ral branches of f are orientation-preserving or orientation-re-
versing, respectively, and j = + or j = — if fis locally maxim-
al or minimal at ¢, respectively. Finally, let A* = A UA*™
and define A, B*,8°,C*,C", D", D analogously.

The proof of the following lemma can be found in Ref. [5].

Lemma 2.1. Suppose (r,7) is admissible, then there exists
an (r,1)-Fibonacci bimodal map f, and its first return map se-
quence {g,} satisfies the following conditions:

(1) If r is even and ¢ is odd, the first return map sequence
{g,} exhibits the sequence A*'BC A BCA--- or
CABCABC .

(2) If r is odd and ¢ is odd, the first return map sequence
{g.} exhibits the sequence A*A* A* A" --- or C A A A" ---.

LetS,=2,8,=1, for n> 1, define inductively

S =S8,+r=DS, and§,., =S, +@-1S,.

Then the return times of critical points ¢ and d to "' U J""
are equal to S,, while the return times of g,(c) and g,(d) to
I''UJ" are equal to S,.

Example 2.1. The Fibonacci bimodal maps studied in Ref.
[15] are (2, 1)-Fibonacci, where the first return time of critic-
al points ¢ and d to I""' UJ"" coincides with the Fibonacci se-
quence. In this case $§,=S,, and hence S,.,=S,+S,,. In
particular, the first return map sequence {g,} exhibits the
sequence

\7(++.(37+Cf —ﬂ7+8+7c+7ﬂ+787 Citﬂi —B++C++ﬂ++ .
or

CA B'C"A"BC A'BCAB C"---
depending on f € B* or fe B .

Example 2.2. For r =4 and =3, we can find the (4,3)-
Fibonacci bimodal maps, and the first return map sequence
{g,} exhibits the sequence A'BC A BCA--- or
CABCABC---.

For r=5 and tr=3, we can find the (5,3)-Fibonacci

bimodal maps, and the first return map sequence {g,} exhibits
the sequence A*A* A A" --- or C A A A ---.

3 Acipforf

Following the strategy in Ref. [1], the idea is to construct a
Markov induced map G over f with the intervals I" and J" as
a countable set of ranges: G is defined on a countable collec-
tion of intervals T;, G|T;= f*|T; is a diffeomorphism and
G(T,) =1I" or G(T;) = J" for some n. We will construct a G-in-
variant measure v < Leb, and estimate v(I") and v(J"), where
vy < Leb means that v is an absolutely continuous (with re-
spect to the Lebesgue measure) invariant probability measure
(acip for short). One result of this section is the following
proposition, we will give a proof in Subsection 3.4.
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Proposition 3.1. The induced map G admits an acip v.
Moreover, for arbitrarily small €>0, there exists
C, = Cy(f,€) such that v(I") + v(J") < Co(\€)".

It is well-known that the nonexistence of a ‘wild attractor’
is based only on the decay of geometry in the unimodal case.

Corollary 3.1. Suppose feB, then f has no Cantor
attractor.

Proof. This follows from the observation that a Cantor at-
tractor has zero Lebesgue measure, and, disregarding the crit-
ical points, is invariant by G. Hence G cannot carry an acip if
a Cantor attractor is present.

3.1 Distortion

Given a bounded interval / and a constant 7> 0, let 7/ de-
note the open interval that is concentric with 7 and has length
7]1|. We say a bounded interval J is z-well inside an interval 7
if (1+27)JCT, i.e. both components of 7'\ J have a length
of at least 7|J|.

The distortion of a C' function 4 : J — h(J) is defined as

Dh

Let us say a diffeomorphism 4 :J — h(J) belongs to the
distortion class F if it can be written as

QogoquO(qulo-quogol

with ¢ < p, where Q(x) = x> and D(p;) < C forall 1 < j<gq.
The following lemma can be found in Ref. [1].
Lemma 3.1. If :J — I is a diffeomorphism in ¥, and
A C J is a measurable set, then
1 Leb(h(A)) < Leb(A) < Leb(h(A))

< e’( )
Qe 1| 1 1|

The Schwarzian derivative of a C* function ¢: T — R is

defined as
S¢:= ¢— - é((ﬂ

¢ 29
It is well known that if S¢ <0, then S¢" <0 for all n> 1.
Moreover, if f is a real polynomial with only real critical
points, then S f < 0; see, for example, Ref. [11, Chapter IV,
Exercise 1.7].

We shall use the following version of the Koebe principle,
which was proved in Ref. [11].

Proposition 3.2. Assume that 4: T — A(T) is a C° diffeo-
morphism with Sk <0. If J is a subinterval of T such that
h(J) is x-well inside h(T), then,

).

1
D(h;J) < logK,,where K, = (ﬂ)z.
K

The interval J is k' -well inside 7, where « = «*/(1 + 2«).

Suppose f € B. For any € >0 small, pick a large positive
integer n, = ny,(f) such that A, < € for all n > n,, and such that
fII™ and f|J™ can be written as x — @ o x> with D(p) < 1/4.
By Proposition 3.2, it follows that for each n > n,, if J is a re-
turn domain to I" or J", and f*|J is the return, then f*|J can
be written as x — @ o x> with D(¢) < 1/2 provided e is suffi-
ciently small.
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3.2 Construction of induced maps

Let G, be the first return map to 1°UJ°. Then G, has finite
number of branches, the two central branches (each contains
one critical point) are the branches with return time 2, and
each non-central branch maps diffeomorphically onto /° or J°
with return time 1.

We  will construct a  sequence of  maps
G,: U, LU, R — I"UJ° inductively such that

® U, L' cI’ and |J,R* c J° are finite unions and for
n>1,G,=G,, outside I"UJ";

@ the central branches Li*' ="' and R*'=J"', G,|I""!
and G,|J"" are the first return maps to I" or J";

@ for each i#0, there exists b,<n such that
G,:L" =1, or G,: L' — J, is a diffeomorphism; analog-
ously for R/*';

@ for each i#0, L' cI" and L' NOI"#0 imply
G,(L*")=1°or J° (and the common boundary of L*' and I"
maps to the fixed point p); analogously for R/*';

® G,(x) = f*(x) implies that f(x),..., ' (x) g I'UJ".

By definition G, satisfies the above statements, so let us
assume that by induction G, exists with the above properties,
and construct G,,,. It suffices to construct G,,, inside I"*'
since the construction inside J**' is similar.

Set G,.,(x) = G,(x) for x ¢ I"""UJ™'. Let k, € N be minim-
al so that G*(c) e I"""UJ™". Since all the returns are non-
central, k,>2. Define K°=I"", K'“=I" and, for
0<j<k,—1, let K/ be the component of dom(G/*') which
contains c. Next define on K/ \ K/*',

_ | GM(x),
G,. —{ GI2(x),

lf G’/;H(x) c ]n+1 U Jn+l;
otherwise.

G, |[I"* = G¥|I"* is the first return map to """ U J*".
Properties (D and @ hold by construction for G,,,. Prop-
erty ® holds because if G/*'(x) € I'"*' (resp. J™*') for some
xeI"'"\I'? then G, (L") =1I"" (resp, J*') for the corres-
ponding domain L!*' > x; and if G/*'(x) ¢ I""' UJ™' then by
the induction assumption G,,,(L/"") is equal to some /" or J*
with b < n, because then G,.,(x) = G/**(x). Property @ holds

1
g c

Fig. 1. Examples of types A B C.
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immediately because dI" and dJ" are mapped by G, into
O0I'UAJ°. To show that property ® holds, take x € K/ \ K’*'

and let y = G/(x). Note that G/|K’ is inside a component of
dom(G,) and that all iterates f(K’),...,G/(K’) 3y are outside
I“'uJ+'. Since G/*'(x)=G,(y), we obtain by induction
that ® holds for G,,, using that it holds for G, and y instead
of x.

The induced map G is defined as follows: for each n >0,
each component of the domain J of G, other than the central
domains /"' and J*' becomes a component of the domain of
G,and G|J =G,|J.

Moreover, we compute by induction that if
x €I\ I*YUJ"\ J™), and G(x) = f(x), then

s<ty-(ky+1)...(k,n +1)- (k. + 1),

where t, = min{i > 0, f'(¢), fi((d) e I’UJ°}. Note that for
feB, t,=2.
3.3 The measure of the induced map
Note that the assumptions give that there exists a constant B
with the following property: if J is any branch of G* and
G*(J) =1I", then
- (K n+m n+m
Leb({x € J;G*(x) € I'""}) < Bl[ |.
I 2]

(M

The same result holds when G*(J)=J". This trivially in-
cludes the branch of G, that is the identity. Note that B is a
distortion constant, and B<2 for e sufficiently small and
n > n,. Therefore, we can assume that B+/e/(1 - ve) < 1/3.
Moreover, |I"| < e*|I*| for all n >k > n,.

We use the notation a(y) =n if y e (I"\ ") U (J"\ J™).

Lemma 3.2. If J is a branch of G*! such that G*'(J) = I"*',
then

Leb(x € J;a(G*(x)) 2 n+1) < él]l, 2)

provided n > n,y; analogously for G*'(J) = J"*'.
Proof. Let "' = K°> K' O... D> K* = ["** be as in Subsec-

L I 1 I ! 1 | e | I . 1 I 1 For o oo o on g
—t —t T T I T 1 —

— 45
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tion 3.2. For each 0 < i<k, —1 with K’ # K™', there can be at
most two branches inside K, symmetric with respect to the
critical point ¢, which map onto I"*' or J™'. Let PC K'\ K™*'
be such a branch (if it exists). We claim that P is &(e)-well in-
side K. To see this, let s €N be such that G|P = f*|P. We
may assume that G(P)=1I"'. In particular, G|P=G"'|K".
Then by our construction, f*~' maps an interval T 3 f(c) onto
some interval I/ with j<n, and f'(T)=K'. Since ["*' is
6(e)-well inside I, by Proposition 3.2, f(P) is &(e)-well in-
side 7. Then the claim follows from the non-flatness of the
critical point. Moreover, &(€) — oo as € — 0.

Let U,,, be the union of those domains of G inside
I*"\ I"** that are mapped onto I"*' or J™*' by G. Then by the
Koebe principle,

1
Leb({x € J;G"'(x) € U, ) < EIJL

It remains to consider branches J' of G‘|J for which
G*(J)=1I" or J* with n’ < n. Then, using the remark before
this lemma, we have

Leb({x € J';G*(x) € I'"*'}) [ < 1
1] T

This finishes the proof.
3.4 Acip for G

In this subsection we prove the existence of an acip for the in-
duced map G.

Proof of Proposition 3.1. We will use the result given by
Ref. [13] claiming that G has an acip if and only if there ex-
ists some 1 € (0,1) and § > 0 such that for every measurable
set 4 of measure Leb(A) < § holds Leb(G™(A)) < 7.

Write Vux = Leb({x € I° U J°; a(G*(x)) = n}). Take
6B
min{|Z"],|J"[}
Vo < Cy+ ({/e)" for all n,k > 0. From the choice of C,, for all

n < n, and all k, we have

C,>

1
-(=)°. We prove by induction that
€

VS 1<Co-€' < Co'(\/g)n~
For k = 0, it suffices to prove for n > n, + 1. Indeed,

1

€

Yoo S(I°[+1J7])- €7 < €' — < Cy-€ < Cy- (Ve

Now for the inductive step, assume that y,,; < C,-(Ve)"
for all n. Pick nzn,+1. Write Vowiet =
Leb({x € I’ U J°;a(G*'(x)) = n’ and a(G*(x)) = n}). Therefore
we have

Yok = Zyu,n’.k—l + Z Yuw k=t T Yuni-1 + Zyu,n’.k—l-

n’'<ngy no<n’<n n'>n

Term 1. Let J be any branch of G*' such that G*'J = I".
Then any branch J of G* with J’ C J are mapped onto some
I" with b < n’. By fomula (1),

Leb({x € J';a(G*(x)) = n}) ||

<B—.
1] 7]

Summing over all such J’, we have

0802-5

14 .G, G .
D Vi <B|I,XO|Z|J|< Do ey

n’ <ng

Term 2. Since n, < n’ < n, formula (1) and induction imply

Vi1 S B+ e Ywio1 S B- e -Co( ‘/E)n, < Cy( \/E)” - B( \/E)'H“

Therefore,

3 st SGVEY Y B(VEY < (VR

no<n’<n n’'<n

Term 3. By formula (2) and induction,

1 C
y/x,n,k—l < gy»x./s—l < FO(\/E)n

Term 4. Since n’ > n,

D Vit €Y vein < L GV <

n'>n n'>n n'>n

. C
Co(Ve)' § (Ve < —30(\/2)”-
lherefore,

1 1 1 1
yn.k<(g+§+6+5)Co'(\/g)"=co'(\/z)"~

If an acip v exists, then it can be written as

n—1

1 _
V(A) = lim, ., ~ Z Leb(G'A). Therefore,
n

v +v(J") < C, - (Ve

Now take 17 € (0,1). Fix n, such that } ., y,. <7/2 for all
k> 0. We need to show that we can choose § >0 so that if
Acl’UJ’ is a set of measure Leb(A)<¢§, then
Leb(G™*(A)) < n for all k> 0. By the choice of n,, it suffices
to show that Leb(G™*(A)) <n/2 for any
Ac\I")Uu(°\J") and all k > 0.

Without loss of generality, assume that A c I"\I"' for
some 7n < n,. Consider any branch G*: J — I".

Case 1. If a(G'(J))<n, for all 0<i<k-1. By Maiié’s
theorem!'”), there exists C, = C,(f) such that D(G*;J) < C,.

Case 2. If G*|J can be extended to G*:J— I"' with
n > n,, then by Proposition 3.2, D(G*;J) < K..

In either case we have

|Al , 1A]

Leb(G*ANT) < C’mlll <C |

|J].

Case 3. There exist m >n and i< k that are maximal so
that

m=a(GJ)>a(G"J)>...>a(G""J)>n.
By Ref. [1, Proposition 2], any onto branch G* : J — I" can be

written as ¥ o ¢ with

D) <logC, and p € F,

(m—n+1)*
Clearly, i > k—m+n—1. For such a branch, by Lemma 3.1,
|Al

Leb(G*ANJ) < (:219(W YR
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For fixed m, the total measure of the set of points arriving
at, I in this fashion is bounded by

k-1
D Yu <m=n+DCy- (V.
kfgﬁfﬁming over all branches J and all m > n, we have

) Al AL o
Leb(G*A)<C'— + -n+1)Cy- "-CyB(=—)""? .
eb(G*A)SC' I ) =+ DC,- (VO GBS

i=

mzn

Thus Leb(G™*A) < n/4n, for any k >0 and any A c I"\ I'"*',
n <n,, with |A| <8, provided ¢ is sufficiently small. It fol-
lows that if Ac (°\I")U(J°\J") with Leb(A) <, then
Leb(G™A) < 2n,n/(4n,) = /2. This finishes the proof.

3.5 Acip for f

In this subsection we prove the main theorem.

Proof of Theorem 1.2. Let f € B. Fix r>2. Let G be the
Markov induced map of f. By Proposition 3.1, G admits an
acip v. Now it sufficed to show that we can pullback v to ob-
tain an acip for f.

Let I""' =K°> K' D> --- > K = ["** be as in Subsection 3.2.
Since ¢ < r, we can prove by induction that It*' ¢ K\ K*' and
G|I'*' is exactly the first return onto " or J". The same holds
for Ji*'. Now it is easy to check that k, = r. Therefore, if
x €@\ I")U "\ J*) and G(x) = f*(x), then

s<2(r+1)".

Summing over all branches J; ¢ (I"\ I"*")U (J"\ J""), let s;
denote the induced time on J;. Then we find the partial sum

Z sV(J) < 2(r+ 1)) +v(I") < 2Co(r+ 1) (Ve

Jj

is exponentially small provided e is sufficiently small.
Now this proposition follows by a standard pullback con-
struction. Define u by

pa) =" EV(f”A nJy).

i

As f'is non-singular with respect to Lebesgue, u is abso-
lutely continuous, and the f-invariance of u is a standard res-
ult. The finiteness of u follows directly from the fact that

Z siv(J;) < 0.

4 Conclusions

This paper considers the metric properties of a class of non-
renormalizable cubic polynomials with generalized Fibonacci
combinatorics. The interval maps with Fibonacci combinator-
ics are the candidate that has wild Cantor attractor () and
have been studied widely for unimodal maps (“I!). The situ-
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ation for multimodal is much more complicated. In this paper,
we consider a special class of bimodal maps. The combinator-
ics of such a class were defined in terms of generalized renor-
malization based on the twin principal nest. The main result
states that maps in this class with bounded combinatorics will
have an absolutely continuous invariant measure. Moreover,
we prove that any maps from such a class admits no Cantor
attractor.
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