[1] |
Li K, Qin W W, Li F, et al. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angewandte Chemie International Edition, 2013, 52: 11542–11545. doi: 10.1002/anie.201305980
|
[2] |
Hazarika P, Russell D A. Advances in fingerprint analysis. Angewandte Chemie International Edition, 2012, 51: 3524–3531. doi: 10.1002/anie.201104313
|
[3] |
Li M L, Tian T, Zeng Y J, et al. Individual cloud-based fingerprint operation platform for latent fingerprint identification using perovskite nanocrystals as eikonogen. ACS Applied Materials & Interfaces, 2020, 12: 13494–13502. doi: 10.1021/acsami.9b22251
|
[4] |
Jie Y, Zhu H R, Cao X, et al. One-piece triboelectric nanosensor for self-triggered alarm system and latent fingerprint detection. ACS Nano, 2016, 10: 10366–10372. doi: 10.1021/acsnano.6b06100
|
[5] |
Zhang Y Y, Zhou W, Xue Y, et al. Multiplexed imaging of trace residues in a single latent fingerprint. Analytical Chemistry, 2016, 88: 12502–12507. doi: 10.1021/acs.analchem.6b04077
|
[6] |
Gao J J, Tian M, He Y R, et al. Multidimensional-encryption in emissive liquid crystal elastomers through synergistic usage of photorewritable fluorescent patterning and reconfigurable 3D shaping. Advanced Functional Materials, 2022, 32: 2107145. doi: 10.1002/adfm.202107145
|
[7] |
Liu C, Wu S F, Yan Y B, et al. Application of magnetic particles in forensic science. TrAC Trends in Analytical Chemistry, 2019, 121: 115674. doi: 10.1016/j.trac.2019.115674
|
[8] |
Yu B J, Liu S D, Xie W H, et al. Versatile core–shell magnetic fluorescent mesoporous microspheres for multilevel latent fingerprints magneto-optic information recognition. InfoMat, 2022, 4: e12289. doi: 10.1002/inf2.12289
|
[9] |
Levy D, Giustetto R, Hoser A. Structure of magnetite (Fe3O4) above the Curie temperature: a cation ordering study. Physics and Chemistry of Minerals, 2012, 39: 169–176. doi: 10.1007/s00269-011-0472-x
|
[10] |
Thangaraju D, Santhana V, Matsuda S, et al. Fabrication and luminescence characterization of a silica nanomatrix embedded with NaYF4:Yb:Er:Tm@NaGdF4/Fe3O4 nanoparticles. Journal of Electronic Materials, 2018, 47: 4555–4560. doi: 10.1007/s11664-018-6328-0
|
[11] |
Shrivastava N, Ospina C, Jacinto C, et al. Probing the optical and magnetic modality of multi core-shell Fe3O4@SiO2@β-NaGdF4: RE3+ (RE = Ce, Tb, Dy) nanoparticles. Optical Materials, 2023, 137: 113585. doi: 10.1016/j.optmat.2023.113585
|
[12] |
Zhong C N, Yang P P, Li X B, et al. Monodisperse bifunctional Fe3O4@NaGdF4:Yb/Er@NaGdF4:Yb/Er core-shell nanoparticles. RSC Advances, 2012, 2: 3194–3197. doi: 10.1039/c2ra20070h
|
[13] |
Tang Y W, Liu H, Gao J W, et al. Upconversion particle@Fe3O4@molecularly imprinted polymer with controllable shell thickness as high-performance fluorescent probe for sensing quinolones. Talanta, 2018, 181: 95–103. doi: 10.1016/j.talanta.2018.01.006
|
[14] |
Wang F, Deng RR, Liu X G. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nature Protocols, 2014, 9: 1634–1644. doi: 10.1038/nprot.2014.111
|
[15] |
Wang F, Han Y, Lim C S, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature, 2010, 463: 1061–1065. doi: 10.1038/nature08777
|
[16] |
Xu D, Xu J, Shang X, et al. Boosting the energy migration upconversion through inter-shell energy transfer in Tb3+-doped sandwich structured nanocrystals. CCS Chemistry, 2022, 4: 2031–2042. doi: 10.31635/ccschem.021.202101047
|
[17] |
Sandhyarani A, Kokila M K, Darshan G P, et al. Versatile core–shell SiO2 @SrTiO3: Eu3+, Li + nanopowders as fluorescent label for the visualization of latent fingerprints and anti-counterfeiting applications. Chemical Engineering Journal, 2017, 327: 1135–1150. doi: 10.1016/j.cej.2017.06.093
|
[18] |
Xu J, Zhang B B, Jia L, et al. Dual-mode, color-tunable, lanthanide-doped core–shell nanoarchitectures for anti-counterfeiting inks and latent fingerprint recognition. ACS Applied Materials & Interfaces, 2019, 11: 35294–35304. doi: 10.1021/acsami.9b10989
|
[1] |
Li K, Qin W W, Li F, et al. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angewandte Chemie International Edition, 2013, 52: 11542–11545. doi: 10.1002/anie.201305980
|
[2] |
Hazarika P, Russell D A. Advances in fingerprint analysis. Angewandte Chemie International Edition, 2012, 51: 3524–3531. doi: 10.1002/anie.201104313
|
[3] |
Li M L, Tian T, Zeng Y J, et al. Individual cloud-based fingerprint operation platform for latent fingerprint identification using perovskite nanocrystals as eikonogen. ACS Applied Materials & Interfaces, 2020, 12: 13494–13502. doi: 10.1021/acsami.9b22251
|
[4] |
Jie Y, Zhu H R, Cao X, et al. One-piece triboelectric nanosensor for self-triggered alarm system and latent fingerprint detection. ACS Nano, 2016, 10: 10366–10372. doi: 10.1021/acsnano.6b06100
|
[5] |
Zhang Y Y, Zhou W, Xue Y, et al. Multiplexed imaging of trace residues in a single latent fingerprint. Analytical Chemistry, 2016, 88: 12502–12507. doi: 10.1021/acs.analchem.6b04077
|
[6] |
Gao J J, Tian M, He Y R, et al. Multidimensional-encryption in emissive liquid crystal elastomers through synergistic usage of photorewritable fluorescent patterning and reconfigurable 3D shaping. Advanced Functional Materials, 2022, 32: 2107145. doi: 10.1002/adfm.202107145
|
[7] |
Liu C, Wu S F, Yan Y B, et al. Application of magnetic particles in forensic science. TrAC Trends in Analytical Chemistry, 2019, 121: 115674. doi: 10.1016/j.trac.2019.115674
|
[8] |
Yu B J, Liu S D, Xie W H, et al. Versatile core–shell magnetic fluorescent mesoporous microspheres for multilevel latent fingerprints magneto-optic information recognition. InfoMat, 2022, 4: e12289. doi: 10.1002/inf2.12289
|
[9] |
Levy D, Giustetto R, Hoser A. Structure of magnetite (Fe3O4) above the Curie temperature: a cation ordering study. Physics and Chemistry of Minerals, 2012, 39: 169–176. doi: 10.1007/s00269-011-0472-x
|
[10] |
Thangaraju D, Santhana V, Matsuda S, et al. Fabrication and luminescence characterization of a silica nanomatrix embedded with NaYF4:Yb:Er:Tm@NaGdF4/Fe3O4 nanoparticles. Journal of Electronic Materials, 2018, 47: 4555–4560. doi: 10.1007/s11664-018-6328-0
|
[11] |
Shrivastava N, Ospina C, Jacinto C, et al. Probing the optical and magnetic modality of multi core-shell Fe3O4@SiO2@β-NaGdF4: RE3+ (RE = Ce, Tb, Dy) nanoparticles. Optical Materials, 2023, 137: 113585. doi: 10.1016/j.optmat.2023.113585
|
[12] |
Zhong C N, Yang P P, Li X B, et al. Monodisperse bifunctional Fe3O4@NaGdF4:Yb/Er@NaGdF4:Yb/Er core-shell nanoparticles. RSC Advances, 2012, 2: 3194–3197. doi: 10.1039/c2ra20070h
|
[13] |
Tang Y W, Liu H, Gao J W, et al. Upconversion particle@Fe3O4@molecularly imprinted polymer with controllable shell thickness as high-performance fluorescent probe for sensing quinolones. Talanta, 2018, 181: 95–103. doi: 10.1016/j.talanta.2018.01.006
|
[14] |
Wang F, Deng RR, Liu X G. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nature Protocols, 2014, 9: 1634–1644. doi: 10.1038/nprot.2014.111
|
[15] |
Wang F, Han Y, Lim C S, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature, 2010, 463: 1061–1065. doi: 10.1038/nature08777
|
[16] |
Xu D, Xu J, Shang X, et al. Boosting the energy migration upconversion through inter-shell energy transfer in Tb3+-doped sandwich structured nanocrystals. CCS Chemistry, 2022, 4: 2031–2042. doi: 10.31635/ccschem.021.202101047
|
[17] |
Sandhyarani A, Kokila M K, Darshan G P, et al. Versatile core–shell SiO2 @SrTiO3: Eu3+, Li + nanopowders as fluorescent label for the visualization of latent fingerprints and anti-counterfeiting applications. Chemical Engineering Journal, 2017, 327: 1135–1150. doi: 10.1016/j.cej.2017.06.093
|
[18] |
Xu J, Zhang B B, Jia L, et al. Dual-mode, color-tunable, lanthanide-doped core–shell nanoarchitectures for anti-counterfeiting inks and latent fingerprint recognition. ACS Applied Materials & Interfaces, 2019, 11: 35294–35304. doi: 10.1021/acsami.9b10989
|