[1] |
Li S Q, Wang K, Zhang G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives. Adv. Funct. Mater., 2022, 32 (23): 2200796. doi: 10.1002/adfm.202200796
|
[2] |
Li M, Lu J, Chen Z, et al. 30 years of lithium-ion batteries. Adv. Mater., 2018, 30 (33): 1800561. doi: 10.1002/adma.201800561
|
[3] |
Wang W G, Liu Y, Wu X, et al. Advances of TiO2 as negative electrode materials for sodium-ion batteries. Adv. Mater. Technol., 2018, 3 (9): 1800004. doi: 10.1002/admt.201800004
|
[4] |
Zhang Y Y, Tang Y X, Li W L, et al. Nanostructured TiO2-based anode materials for high-performance rechargeable lithium-ion batteries. ChemNanoMat, 2016, 2 (8): 764–775. doi: 10.1002/cnma.201600093
|
[5] |
Yan X D, Wang Z H, He M, et al. TiO2 nanomaterials as anode materials for lithium-ion rechargeable batteries. Energy Technology, 2015, 3 (8): 801–814. doi: 10.1002/ente.201500039
|
[6] |
Barnes P, Zuo Y, Dixon K, et al. Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries. Nat. Mater., 2022, 21 (7): 795–803. doi: 10.1038/s41563-022-01242-0
|
[7] |
Liu Y, Ding C F, Yan X D, et al. Interface-strain-confined synthesis of amorphous TiO2 mesoporous nanosheets with stable pseudocapacitive lithium storage. Chem. Eng. J., 2021, 420: 129894. doi: 10.1016/j.cej.2021.129894
|
[8] |
Zhou M, Xu Y, Wang C L, et al. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy, 2017, 31: 514–524. doi: 10.1016/j.nanoen.2016.12.005
|
[9] |
Zhou M, Xu Y, Xiang J X, et al. Sodium-ion batteries: Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Adv. Energy Mater., 2016, 6 (23): 1600448. doi: 10.1002/aenm.201600448
|
[10] |
Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci., 2014, 7 (5): 1597–1614. doi: 10.1039/c3ee44164d
|
[11] |
Xiong H, Yildirim H, Shevchenko E V, et al. Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J. Phys. Chem. C, 2012, 116: 3181–3187. doi: 10.1021/jp210793u
|
[12] |
Gao Q, Gu M, Nie A M, et al. Direct evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes. Chem. Mater., 2014, 26 (4): 1660–1669. doi: 10.1021/cm403951b
|
[13] |
Liu Y, Ding C F, Xie P T, et al. Surface-reconstructed formation of hierarchical TiO2 mesoporous nanosheets with fast lithium-storage capability. Mater. Chem. Front., 2021, 5 (7): 3216–3225. doi: 10.1039/D1QM00065A
|
[14] |
Yan S H, Abhilash K P, Tang L Y, et al. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small, 2019, 15 (4): 1804371. doi: 10.1002/smll.201804371
|
[15] |
Deng C J, Lau M L, Ma C R, et al. A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. J. Mater. Chem. A, 2020, 8: 3333–3343. doi: 10.1039/C9TA12499C
|
[16] |
Wu J X, Liu H W, Tang A W, et al. Unexpected reversible crystalline/amorphous (de)lithiation transformations enabling fast (dis)charge of high-capacity anatase mesocrystal anode. Nano Energy, 2022, 102: 107715. doi: 10.1016/j.nanoen.2022.107715
|
[17] |
Qi Y, Zeng X Q, Xiao L P, et al. An invisible hand: Hydrogen bonding guided synthesis of ultrathin two-dimensional amorphous TiO2 nanosheets. Sci. China Mater., 2022, 65 (11): 3017–3024. doi: 10.1007/s40843-022-2097-2
|
[18] |
Li Q W, Wang H, Tang X F, et al. Electrical conductivity adjustment for interface capacitive-like storage in sodium-ion battery. Adv. Funct. Mater., 2021, 31 (24): 2101081. doi: 10.1002/adfm.202101081
|
[19] |
Han J, Hirata A, Du J, et al. Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49: 354–362. doi: 10.1016/j.nanoen.2018.04.063
|
[20] |
Lu C X, Li X Y, Liu R H, et al. Optimized Ti–O subcompounds and elastic expanded MXene interlayers boost quick sodium storage performance. Adv. Funct. Mater., 2023, 33 (19): 2215228. doi: 10.1002/adfm.202215228
|
[21] |
Yang J P, Wang Y X, Li W, et al. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater., 2017, 29 (48): 1700523. doi: 10.1002/adma.201700523
|
[22] |
Ye J, Shea P, Baumgaertel A C, et al. Amorphization as a pathway to fast charging kinetics in atomic layer deposition-derived titania films for lithium ion batteries. Chem. Mater., 2018, 30 (24): 8871–8882. doi: 10.1021/acs.chemmater.8b04002
|
Figure 1. (a) Schematic illustration of the synthesis of a-TiO2 and c-TiO2. (b) SEM image of a-TiO2. (c) SEM image of a-TiO2 for details. (d) TEM image of a-TiO2. (e) HRTEM image of a-TiO2 with the inset of SAED pattern. (f) TEM image of c-TiO2. (g) HRTEM image of c-TiO2 with the inset of the SAED pattern.
Figure 3. (a) Detailed schemes of TiO2-based lithium-ion batteries. (b) CV curves at 0.1 mV·s−1. (c) Galvanostatic discharge/charge profiles of the 1st, 2nd and 10th cycles at 50 mA·g−1. (d) Rate performance. (e) Cycling performances of the a-TiO2 and c-TiO2 electrodes at 500 mA·g−1. (f) Cycling performances at 6 A·g−1.
Figure 5. (a) Li+ diffusion coefficient of a-TiO2 and c-TiO2 during discharging. (b) Li+ diffusion coefficient of a-TiO2 and c-TiO2 during charging. (c) Electrochemical impedance spectroscopy after 10, 50, and 100 cycles at a current density of 500 mA·g−1. (d) Electrochemical impedance spectroscopy after 10, 50, and 100 cycles at a current density of 2 A·g−1.
[1] |
Li S Q, Wang K, Zhang G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives. Adv. Funct. Mater., 2022, 32 (23): 2200796. doi: 10.1002/adfm.202200796
|
[2] |
Li M, Lu J, Chen Z, et al. 30 years of lithium-ion batteries. Adv. Mater., 2018, 30 (33): 1800561. doi: 10.1002/adma.201800561
|
[3] |
Wang W G, Liu Y, Wu X, et al. Advances of TiO2 as negative electrode materials for sodium-ion batteries. Adv. Mater. Technol., 2018, 3 (9): 1800004. doi: 10.1002/admt.201800004
|
[4] |
Zhang Y Y, Tang Y X, Li W L, et al. Nanostructured TiO2-based anode materials for high-performance rechargeable lithium-ion batteries. ChemNanoMat, 2016, 2 (8): 764–775. doi: 10.1002/cnma.201600093
|
[5] |
Yan X D, Wang Z H, He M, et al. TiO2 nanomaterials as anode materials for lithium-ion rechargeable batteries. Energy Technology, 2015, 3 (8): 801–814. doi: 10.1002/ente.201500039
|
[6] |
Barnes P, Zuo Y, Dixon K, et al. Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries. Nat. Mater., 2022, 21 (7): 795–803. doi: 10.1038/s41563-022-01242-0
|
[7] |
Liu Y, Ding C F, Yan X D, et al. Interface-strain-confined synthesis of amorphous TiO2 mesoporous nanosheets with stable pseudocapacitive lithium storage. Chem. Eng. J., 2021, 420: 129894. doi: 10.1016/j.cej.2021.129894
|
[8] |
Zhou M, Xu Y, Wang C L, et al. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy, 2017, 31: 514–524. doi: 10.1016/j.nanoen.2016.12.005
|
[9] |
Zhou M, Xu Y, Xiang J X, et al. Sodium-ion batteries: Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Adv. Energy Mater., 2016, 6 (23): 1600448. doi: 10.1002/aenm.201600448
|
[10] |
Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci., 2014, 7 (5): 1597–1614. doi: 10.1039/c3ee44164d
|
[11] |
Xiong H, Yildirim H, Shevchenko E V, et al. Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J. Phys. Chem. C, 2012, 116: 3181–3187. doi: 10.1021/jp210793u
|
[12] |
Gao Q, Gu M, Nie A M, et al. Direct evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes. Chem. Mater., 2014, 26 (4): 1660–1669. doi: 10.1021/cm403951b
|
[13] |
Liu Y, Ding C F, Xie P T, et al. Surface-reconstructed formation of hierarchical TiO2 mesoporous nanosheets with fast lithium-storage capability. Mater. Chem. Front., 2021, 5 (7): 3216–3225. doi: 10.1039/D1QM00065A
|
[14] |
Yan S H, Abhilash K P, Tang L Y, et al. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small, 2019, 15 (4): 1804371. doi: 10.1002/smll.201804371
|
[15] |
Deng C J, Lau M L, Ma C R, et al. A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. J. Mater. Chem. A, 2020, 8: 3333–3343. doi: 10.1039/C9TA12499C
|
[16] |
Wu J X, Liu H W, Tang A W, et al. Unexpected reversible crystalline/amorphous (de)lithiation transformations enabling fast (dis)charge of high-capacity anatase mesocrystal anode. Nano Energy, 2022, 102: 107715. doi: 10.1016/j.nanoen.2022.107715
|
[17] |
Qi Y, Zeng X Q, Xiao L P, et al. An invisible hand: Hydrogen bonding guided synthesis of ultrathin two-dimensional amorphous TiO2 nanosheets. Sci. China Mater., 2022, 65 (11): 3017–3024. doi: 10.1007/s40843-022-2097-2
|
[18] |
Li Q W, Wang H, Tang X F, et al. Electrical conductivity adjustment for interface capacitive-like storage in sodium-ion battery. Adv. Funct. Mater., 2021, 31 (24): 2101081. doi: 10.1002/adfm.202101081
|
[19] |
Han J, Hirata A, Du J, et al. Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49: 354–362. doi: 10.1016/j.nanoen.2018.04.063
|
[20] |
Lu C X, Li X Y, Liu R H, et al. Optimized Ti–O subcompounds and elastic expanded MXene interlayers boost quick sodium storage performance. Adv. Funct. Mater., 2023, 33 (19): 2215228. doi: 10.1002/adfm.202215228
|
[21] |
Yang J P, Wang Y X, Li W, et al. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater., 2017, 29 (48): 1700523. doi: 10.1002/adma.201700523
|
[22] |
Ye J, Shea P, Baumgaertel A C, et al. Amorphization as a pathway to fast charging kinetics in atomic layer deposition-derived titania films for lithium ion batteries. Chem. Mater., 2018, 30 (24): 8871–8882. doi: 10.1021/acs.chemmater.8b04002
|