[1] |
Neuneier R. Optimal asset allocation using adaptive dynamic programming. In: Proceedings of the 8th International Conference on Neural Information Processing Systems. New York: ACM, 1995: 952–958.
|
[2] |
Nevmyvaka Y, Feng Y, Kearns M. Reinforcement learning for optimized trade execution. In: ICML '06: Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 673–680.
|
[3] |
Meng T L, Khushi M. Reinforcement learning in financial markets. Data, 2019, 4: 110. doi: 10.3390/data4030110
|
[4] |
Liu X, Xiong Z, Zhong S, et al. Practical deep reinforcement learning approach for stock trading. 2022. https://arxiv.org/abs/1811.07522. Accessed April 1, 2022.
|
[5] |
Brim A. Deep reinforcement learning pairs trading with a double deep Q-network. In: 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, 2020: 222–227.
|
[6] |
Gao Z, Gao Y, Hu Y, et al. Application of deep Q-network in portfolio management. In: 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). IEEE, 2020: 268–275.
|
[7] |
Lee J, Koh H, Choe H J. Learning to trade in financial time series using high-frequency through wavelet transformation and deep reinforcement learning. Applied Intelligence, 2021, 51: 6202–6223. doi: 10.1007/s10489-021-02218-4
|
[8] |
Carta S, Corriga A, Ferreira A, et al. A multi-layer and multi-ensemble stock trader using deep learning and deep reinforcement learning. Applied Intelligence, 2021, 51: 889–905. doi: 10.1007/s10489-020-01839-5
|
[9] |
Théate T, Ernst D. An application of deep reinforcement learning to algorithmic trading. Expert Systems with Applications, 2021, 173: 114632. doi: 10.1016/j.eswa.2021.114632
|
[10] |
Lei K, Zhang B, Li Y, et al. Time-driven feature-aware jointly deep reinforcement learning for financial signal representation and algorithmic trading. Expert Systems with Applications, 2020, 140: 112872. doi: 10.1016/j.eswa.2019.112872
|
[11] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. n: Advances in Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000–6010.
|
[12] |
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454: 903–995. doi: 10.1098/rspa.1998.0193
|
[13] |
Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic: IEEE, 2011: 4144–4147.
|
[14] |
Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge, Massachusetts: The MIT Press, 2018.
|
[15] |
Bellman R. Dynamic Programming. Princeton: Princeton University Press, 1972.
|
[1] |
Neuneier R. Optimal asset allocation using adaptive dynamic programming. In: Proceedings of the 8th International Conference on Neural Information Processing Systems. New York: ACM, 1995: 952–958.
|
[2] |
Nevmyvaka Y, Feng Y, Kearns M. Reinforcement learning for optimized trade execution. In: ICML '06: Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 673–680.
|
[3] |
Meng T L, Khushi M. Reinforcement learning in financial markets. Data, 2019, 4: 110. doi: 10.3390/data4030110
|
[4] |
Liu X, Xiong Z, Zhong S, et al. Practical deep reinforcement learning approach for stock trading. 2022. https://arxiv.org/abs/1811.07522. Accessed April 1, 2022.
|
[5] |
Brim A. Deep reinforcement learning pairs trading with a double deep Q-network. In: 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, 2020: 222–227.
|
[6] |
Gao Z, Gao Y, Hu Y, et al. Application of deep Q-network in portfolio management. In: 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). IEEE, 2020: 268–275.
|
[7] |
Lee J, Koh H, Choe H J. Learning to trade in financial time series using high-frequency through wavelet transformation and deep reinforcement learning. Applied Intelligence, 2021, 51: 6202–6223. doi: 10.1007/s10489-021-02218-4
|
[8] |
Carta S, Corriga A, Ferreira A, et al. A multi-layer and multi-ensemble stock trader using deep learning and deep reinforcement learning. Applied Intelligence, 2021, 51: 889–905. doi: 10.1007/s10489-020-01839-5
|
[9] |
Théate T, Ernst D. An application of deep reinforcement learning to algorithmic trading. Expert Systems with Applications, 2021, 173: 114632. doi: 10.1016/j.eswa.2021.114632
|
[10] |
Lei K, Zhang B, Li Y, et al. Time-driven feature-aware jointly deep reinforcement learning for financial signal representation and algorithmic trading. Expert Systems with Applications, 2020, 140: 112872. doi: 10.1016/j.eswa.2019.112872
|
[11] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. n: Advances in Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000–6010.
|
[12] |
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454: 903–995. doi: 10.1098/rspa.1998.0193
|
[13] |
Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic: IEEE, 2011: 4144–4147.
|
[14] |
Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge, Massachusetts: The MIT Press, 2018.
|
[15] |
Bellman R. Dynamic Programming. Princeton: Princeton University Press, 1972.
|