[1] |
ACHARD S, BULLMORE E. Efficiency and cost of economical brain functional networks[J]. PLOS Computational Biology, 2007, 3(2):17.
|
[2] |
AHONEN T, HADID A, PIETIKAINEN M. Face description with local binary patterns: Application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28: 2037-2041.
|
[3] |
BEALL E B, LOWE M J. SimPACE: Generating simulated motion corrupted BOLD data with synthetic-navigated acquisition for the development and evaluation of SLOMOCO: A new, highly effective slicewise motion correction[J]. Neuroimage, 2014, 101: 21-34.
|
[4] |
BECKMANN C F. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data[J]. Neuroimage, 2015, 112: 267-277.
|
[5] |
BISWAL B, YETKIN F Z, HAUGHTON V M, et al. Functional connectivity in the motor cortex of resting human brain using echo‐planar mri[J]. Magnetic Resonance in Medicine, 2005, 34: 537-541.
|
[6] |
BISWAL B B, YETKIN F Z, HAUGHTON V M, et al. Functional connectivity in the motor cortex of resting human brain using echo‐planar mri[J]. Magnetic Resonance in Medicine, 1995, 34: 537-541.
|
[7] |
DASH M, LIU H. Feature selection for classification[J]. Intelligent Data Analysis, 1997:131-156.
|
[8] |
FRISTON K J, WILLIAMS S C R, HOWARD R, et al. Movement‐related effects in fMRI time-series[J]. Magnetic Resonance in Medicine, 1996, 35: 346-355.
|
[9] |
GRUNDMAN M, PETERSEN R C, FERRIS S H, et al. Mild cognitive impairment can be distinguished from alzheimer disease and normal aging for clinical trials[J]. JAMA Neurology, 2004, 61: 59-66.
|
[10] |
GUYON I, ELISSEEFF A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research, 2003, 3: 1157-1182.
|
[11] |
HOTELLING H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology, 1933, 24: 498-520.
|
[12] |
WINGATE M, KIRBY R S, PETTYGROVE S, et al. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010[J]. MMWR Survllance summaries, 2014, 63: 1-21.
|
[13] |
JI S, YE J. An accelerated gradient method for trace norm minimization[C]// Proceedings of the 26th annual international conference on machine learning. ACM, 2009:457-464.
|
[14] |
LEE H, LEE D S, KANG H, et al. Sparse brain network recovery under compressed sensing[J]. IEEE Transactions on Medical Imaging, 2011, 30: 1154-1165.
|
[15] |
LI W, WANG Z, ZHANG L, et al. Remodeling pearson's correlation for functional brain network estimation and autism spectrum disorder identification[J]. Frontiers in Neuroinformatics, 2017, 11: 55.
|
[16] |
LI W, ZHANG L, QIAO L, et al. Toward a better estimation of functional brain network for mild cognitive impairment identification: A transfer learning view[J]. IEEE Journal of Biomedical and Health Informatics, 2019: 1-1.
|
[17] |
LIN. LIBSVM: A library for support vector machines[J]. Acm Transactions on Intelligent Systems & Technology, 2011, 2: 1-27.
|
[18] |
LU J, LI Y, WANG L, et al. A new method to remove the Gaussian noise from image in wavelet domain [C]// Nonlinear Signal & Image Processing, Nsip Abstracts IEEE-EURASIP. IEEE, 2005.
|
[19] |
MARRELEC G, KRAINIK A, DUFFAU H, et al. Partial correlation for functional brain interactivity investigation in functional MRI[J]. Neuroimage, 2006, 32: 228-237.
|
[20] |
MILHAM M P. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics[J]. Neuroimage, 2013, 76: 183-201.
|
[21] |
MORADI E, PEPE A, GASER C, et al. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects[J]. Neuroimage, 2015, 104: 398-412.
|
[22] |
OGAWA S, LEE T M, KAY A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(24): 9868-9872.
|
[23] |
POWER J D, BARNES K A, SNYDER A Z, et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion[J]. Neuroimage, 2012, 59: 2142-2154.
|
[24] |
PRUIM R H R, MENNES M, VAN R D, et al. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data[J]. Neuroimage, 2015, 112: 267-277.
|
[25] |
QIAO L, ZHANG H, KIM M, et al. Estimating functional brain networks by incorporating a modularity prior[J]. Neuroimage, 2016, 141: 399-407.
|
[26] |
QIAO L, ZHANG L, CHEN S, et al. Data-driven graph construction and graph learning: A review[J]. Neurocomputing, 2018, 312: 336-351.
|
[27] |
RASHID B, CALHOUN V. Towards a brain‐based predictome of mental illness[J]. Human Brain Mapping, 2020.
|
[28] |
SMITH S M, MILLER K L, SALIMI-KHORSHIDI G, et al. Network modelling methods for FMRI[J]. Neuroimage, 2011, 54(2): 875-891.
|
[29] |
TZOURIO-MAZOYER N, LANDEAU B, PAPATHANASSIOU D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. Neuroimage, 2002, 15: 273-289.
|
[30] |
WANG H, YAN S, XU D, et al. Trace ratio vs. ratio trace for dimensionality reduction[C]// Computer Vision and Pattern Recognition. IEEE, 2007:1-8.
|
[31] |
WANG Z, LIANG P, JIA X, et al. Baseline and longitudinal patterns of hippocampal connectivity in mild cognitive impairment: Evidence from resting state fMRI[J]. Journal of the Neurological Sciences, 2011, 309: 79-85.
|
[32] |
WEE C Y, YAP P T, SHEN D. Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks[J]. Cns Neuroscience & Therapeutics, 2016, 22: 212-219.
|
[33] |
WEE C Y, YAP P T, ZHANG D, et al. Identification of MCI individuals using structural and functional connectivity networks[J]. Neuroimage, 2012, 59: 2045-2056.
|
[34] |
WEISSENBACHER A, KASESS C, GERSTL F, et al. Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies[J]. Neuroimage, 2009, 47: 1408-1416.
|
[35] |
YAN C G, WANG X D, ZUO X N, et al. DPABI: Data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14: 339-351.
|
[36] |
ZHANG L, CHEN S, QIAO L. Graph optimization for dimensionality reduction with sparsity constraints[J]. Pattern Recognition, 2012, 45: 1205-1210.
|
[37] |
ZHOU Y, ZHANG L, TENG S, et al. Improving sparsity and modularity of high-order functional connectivity networks for MCI and ASD identification[J]. Frontiers in Neuroscience, 2018: 12.
|
[38] |
梁夏, 王金辉,贺勇. 人脑连接组研究:脑结构网络和脑功能网络[J]. 科学通报,2010,55:1563-1583.
|