[1] |
CRISFIELD MA. Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics[M]. London: John Wiley & Sons, Inc. 1997.
|
[2] |
高曙明, 何发智. 异构CAD系统集成技术综述[J].计算机辅助设计与图形学学报, 2009, 21(5): 561-568.GAO S M, HE F Z. A survey of heterogeneous CAD system integration[J]. Journal of Computer Aided Design & Computer Graphics, 2009, 21(5): 561-568.
|
[3] |
HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41): 4135-4195.
|
[4] |
张汉杰, 王东东, 轩军厂. 薄梁板结构NURBS几何精确有限元分析[J]. 力学季刊, 2010, 31(4): 469-477.ZHANG H J, WANG D D, XUAN J C. Non-uniform rational B spline-based isogeometric finite element analysis of thin beams and plates[J]. Chinese Quarterly of Mechanics, 2010, 31(4): 469-477.
|
[5] |
许华强. 面向等几何分析的样条参数体生成方法研究[D].杭州: 杭州电子科技大学, 2012.
|
[6] |
BAZILEVS Y,BEIRAO D V L, COTTRELL J A, et al. Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes[J]. Mathematical Models and Methods in Applied Science, 2006, 16(7): 1031-1090.
|
[7] |
徐岗,李新,黄章进,等. 面向等几何分析的几何计算[J]. 计算机辅助设计与图形学学报,2015, 27(4): 570-581.XU G, LI X, HUANG Z J, et al. Geometric computing for isogeometric analysis[J]. Journal of Computer Aided Design & Computer Graphics, 2015, 27(4): 570-581.
|
[8] |
吴紫俊,黄正东,左兵权,等. 等几何分析研究概述[J]. 机械工程学报,2015, 51(5): 114-129.WU Z J, HUANG Z D, ZUO B Q, et al. Perspectives on isogeometric analysis[J]. Journal of Mechanical Engineering, 2015, 51(5): 114-129.
|
[9] |
COHEN E, MARTIN T, KIRBY R M , et al. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8): 334-356.
|
[10] |
XU G, MOURRAIN B, RGIS D, et al. Parameterization of computational domain in isogeometric analysis: Methods and comparison[J]. Computer Methods in Applied Mechanics & Engineering, 2011, 200(23-24): 2021-2031.
|
[11] |
XU G, LI M, MOURRAIN B, et al. Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 175-200.
|
[12] |
DED L, QUARTERONI A. Isogeometric analysis for second order partial differential equations on surfaces[J]. Computer Methods in Applied Mechanics & Engineering, 2015, 284: 807-834.
|
[13] |
LU J. Circular element: Isogeometric elements of smooth boundary[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(30-32): 2391-2402.
|
[14] |
MARTIN T, COHEN E, KIRBY R M. Volumetric parameterization and trivariate B-spline fitting using harmonic functions[J]. Computer Aided Geometric Design, 2009, 26: 648-664.
|
[15] |
WANG D, XUAN J. An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37-40): 2425-2436.
|
[16] |
WU M , WANG Y , MOURRAIN B , et al. Convergence rates for solving elliptic boundary value problems with singular parameterizations in isogeometric analysis[J]. Computer Aided Geometric Design, 2017, 52-53:170-189.
|
[17] |
TAKACS T. Construction of smooth isogeometric function spaces on singularly parameterized domains[J]. Curves and Surfaces, 2014, 9213: 433-451.
|
[18] |
NGUYEN T, PETERS J. Refinable C spline elements for irregular quad layout[J]. Computer Aided Geometric Design. 2016, 43: 123-130.
|
[19] |
TOSHNIWAL D, SPELEERS H, Hiemstra R.R, et al. Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis[J]. Computer Methods in Applied Mechanics & Engineering, 2017, 316: 1005-1061.
|
[20] |
TAKACS T. Approximation properties of isogeometric function spaces on singularly parameterized domains[J].Mathematics, 2015:arXiv:1507.08095v1.
|
[21] |
WU M, MOURRAIN B, GALLIGO A, et al. Hermite type spline spaces over rectangular meshes with complex topological structures[J]. Communications in Computational Physics, 2017, 21(03): 835-866.
|
[22] |
JEONG J W, OH H S, KANG S, et al. Mapping techniques for isogeometric analysis of elliptic boundary value problems containing singularities[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 334-352.
|
[23] |
OH HS, KIM H, JEONG J W. Enriched isogeometric analysis of elliptic boundary value problems in domains with cracks and/or corners[J]. International Journal for Numerical Methods in Engineering, 2014, 97(3): 149-180.
|
[24] |
WU M, MOURRAIN B, GALLIGO A, et al.H-parameterizations of complex planar physical domains in isogeometric analysis[J].Computer Methods in Applied Mechanics and Engineering, 2017, 318: 296-318.
|
[25] |
WU M, WANG X H. A H-integrability condition of surfaces with singular parametrizations in isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 136-156.
|
[26] |
HEBEY E. Sobolev Spaces on Riemannian Manifolds[M]. Berlin: Springer, 1996: 1635.
|
[27] |
施法中. 计算机辅助几何设计与非均匀有理B样条[M].北京: 高等教育出版社, 2013: 217-258.
|
[28] |
TAKACS T, JTTLER B. Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis[J]. Computer Methods in Applied Mechanics & Engineering, 2011, 200(49-52): 3568-3582.
|
[29] |
REIF U. A refineable space of smooth spline surfaces of arbitrary topological genus[J]. Journal of Approximation Theory, 1997, 90(2): 174-199.)
|
[1] |
CRISFIELD MA. Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics[M]. London: John Wiley & Sons, Inc. 1997.
|
[2] |
高曙明, 何发智. 异构CAD系统集成技术综述[J].计算机辅助设计与图形学学报, 2009, 21(5): 561-568.GAO S M, HE F Z. A survey of heterogeneous CAD system integration[J]. Journal of Computer Aided Design & Computer Graphics, 2009, 21(5): 561-568.
|
[3] |
HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41): 4135-4195.
|
[4] |
张汉杰, 王东东, 轩军厂. 薄梁板结构NURBS几何精确有限元分析[J]. 力学季刊, 2010, 31(4): 469-477.ZHANG H J, WANG D D, XUAN J C. Non-uniform rational B spline-based isogeometric finite element analysis of thin beams and plates[J]. Chinese Quarterly of Mechanics, 2010, 31(4): 469-477.
|
[5] |
许华强. 面向等几何分析的样条参数体生成方法研究[D].杭州: 杭州电子科技大学, 2012.
|
[6] |
BAZILEVS Y,BEIRAO D V L, COTTRELL J A, et al. Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes[J]. Mathematical Models and Methods in Applied Science, 2006, 16(7): 1031-1090.
|
[7] |
徐岗,李新,黄章进,等. 面向等几何分析的几何计算[J]. 计算机辅助设计与图形学学报,2015, 27(4): 570-581.XU G, LI X, HUANG Z J, et al. Geometric computing for isogeometric analysis[J]. Journal of Computer Aided Design & Computer Graphics, 2015, 27(4): 570-581.
|
[8] |
吴紫俊,黄正东,左兵权,等. 等几何分析研究概述[J]. 机械工程学报,2015, 51(5): 114-129.WU Z J, HUANG Z D, ZUO B Q, et al. Perspectives on isogeometric analysis[J]. Journal of Mechanical Engineering, 2015, 51(5): 114-129.
|
[9] |
COHEN E, MARTIN T, KIRBY R M , et al. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8): 334-356.
|
[10] |
XU G, MOURRAIN B, RGIS D, et al. Parameterization of computational domain in isogeometric analysis: Methods and comparison[J]. Computer Methods in Applied Mechanics & Engineering, 2011, 200(23-24): 2021-2031.
|
[11] |
XU G, LI M, MOURRAIN B, et al. Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 175-200.
|
[12] |
DED L, QUARTERONI A. Isogeometric analysis for second order partial differential equations on surfaces[J]. Computer Methods in Applied Mechanics & Engineering, 2015, 284: 807-834.
|
[13] |
LU J. Circular element: Isogeometric elements of smooth boundary[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(30-32): 2391-2402.
|
[14] |
MARTIN T, COHEN E, KIRBY R M. Volumetric parameterization and trivariate B-spline fitting using harmonic functions[J]. Computer Aided Geometric Design, 2009, 26: 648-664.
|
[15] |
WANG D, XUAN J. An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37-40): 2425-2436.
|
[16] |
WU M , WANG Y , MOURRAIN B , et al. Convergence rates for solving elliptic boundary value problems with singular parameterizations in isogeometric analysis[J]. Computer Aided Geometric Design, 2017, 52-53:170-189.
|
[17] |
TAKACS T. Construction of smooth isogeometric function spaces on singularly parameterized domains[J]. Curves and Surfaces, 2014, 9213: 433-451.
|
[18] |
NGUYEN T, PETERS J. Refinable C spline elements for irregular quad layout[J]. Computer Aided Geometric Design. 2016, 43: 123-130.
|
[19] |
TOSHNIWAL D, SPELEERS H, Hiemstra R.R, et al. Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis[J]. Computer Methods in Applied Mechanics & Engineering, 2017, 316: 1005-1061.
|
[20] |
TAKACS T. Approximation properties of isogeometric function spaces on singularly parameterized domains[J].Mathematics, 2015:arXiv:1507.08095v1.
|
[21] |
WU M, MOURRAIN B, GALLIGO A, et al. Hermite type spline spaces over rectangular meshes with complex topological structures[J]. Communications in Computational Physics, 2017, 21(03): 835-866.
|
[22] |
JEONG J W, OH H S, KANG S, et al. Mapping techniques for isogeometric analysis of elliptic boundary value problems containing singularities[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 334-352.
|
[23] |
OH HS, KIM H, JEONG J W. Enriched isogeometric analysis of elliptic boundary value problems in domains with cracks and/or corners[J]. International Journal for Numerical Methods in Engineering, 2014, 97(3): 149-180.
|
[24] |
WU M, MOURRAIN B, GALLIGO A, et al.H-parameterizations of complex planar physical domains in isogeometric analysis[J].Computer Methods in Applied Mechanics and Engineering, 2017, 318: 296-318.
|
[25] |
WU M, WANG X H. A H-integrability condition of surfaces with singular parametrizations in isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 136-156.
|
[26] |
HEBEY E. Sobolev Spaces on Riemannian Manifolds[M]. Berlin: Springer, 1996: 1635.
|
[27] |
施法中. 计算机辅助几何设计与非均匀有理B样条[M].北京: 高等教育出版社, 2013: 217-258.
|
[28] |
TAKACS T, JTTLER B. Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis[J]. Computer Methods in Applied Mechanics & Engineering, 2011, 200(49-52): 3568-3582.
|
[29] |
REIF U. A refineable space of smooth spline surfaces of arbitrary topological genus[J]. Journal of Approximation Theory, 1997, 90(2): 174-199.)
|