[1] |
QIN H F. The application of data mining in telecommunication churn customer[J]. Research Journal of Applied Sciences, Engineering and Technology, 2012, 4(11): 1054-1057.
|
[2] |
NICULESCU-MIZIL A, PERLICH C, SWIRSZCZ G, et al. Winning the KDD cup orange challenge with ensemble selection[C]// Proceedings of the International Conference on Knowledge Discovery in Data Competition. Paris : ACM Press, 2009: 23-24.
|
[3] |
XIE J J, ROJKOVA V, PAL S, et al. A Combination of boosting and bagging for KDD cup 2009-fast scoring on a large database[C]// Proceedings of the International Conference on Knowledge Discovery in Data Competition. Paris : ACM Press, 2009: 35-43.
|
[4] |
MILLER H, CLARKE S, LANE S, et al. Predicting customer behaviour: The University of Melbourne’s KDD cup report[C]// Proceedings of the International Conference on Knowledge Discovery in Data Competition. Paris : ACM Press, 2009: 45-55.
|
[5] |
YABAS U, CANKAYA H C. Churn prediction in subscriber management for mobile and wireless communications services[C]// Proceeding of the IEEE GLOBECOM Workshops. Atlanta, USA : IEEE Press, 2013: 991-995.
|
[6] |
IDRIS A, KHAN A. Ensemble based efficient churn prediction model for telecom[C]// Proceeding of 12th International Conference on Frontiers of Information Technology. Islamabad, Pakistan : ACM Press, 2014: 238-244.
|
[7] |
IDRIS A, RIZWAN M, KHAN A. Churn prediction in telecom using random forest and PSO based data balancing in combination with various feature selection strategies[J]. Computers & Electrical Engineering, 2012, 38(6): 1808-1819.
|
[8] |
PENG H C, LONG F H, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238.
|
[9] |
XU Hong, ZHANG Zigang, ZHANG Yishi. Churn prediction in telecom using a hybrid two-phase feature selection method[C]// Proceeding of the Third IEEE International Symposium on Intelligent Information Technology Application. Nanchang, China: ACM Press, 2009: 576-579.
|
[10] |
MANYIKA J, CHUI M, BROWN B, et al. Big data: The next frontier for innovation, competition, and productivity[R]. McKinsey Global Institute Report, New York, 2011.
|
[11] |
WANG S G, LI D Y, WEI Y J, et al. A feature selection method based on fisher’s discriminant ratio for text sentiment classification[C]// Proceedings of the International Conference on Web Information Systems and Mining. Berlin: Springer, 2009: 88-97.
|
[12] |
MOODY J. Prediction risk and architecture selection for neural networks[M]//From Statistics to Neural Networks. Berlin: Springer, 1994: 147-165.
|
[13] |
ZAHARIA M, CHOWDHURY M, FRANKLIN M J, et al. Spark: Cluster computing with working sets[C]// Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. Berkeley, USA: ACM Press, 2010: 10.
|
[14] |
HUGEDOMAINS. 2009 knowledge discovery and data-mining competition[EB/OL]. http://www.kddcup-orange.com.
|
[15] |
JAPKOWICZ N, STEPHEN S. The class imbalance problem: A systematic study[J]. Intelligent Data Analysis, 2002, 6(5): 429-449.
|
[16] |
BREIMAN L. Manual on setting up, using, and understanding random forests v3. 1. 2002[EB/OL]. http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf[2015-12-30] .
|
[17] |
DAVIS J, GOADRICH M. The relationship between precision-recall and ROC curves[C]// Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, USA: ACM Press, 2006: 233-240.
|