ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Study on the feature velocity in ultrasonic guided wave of long bone based on the S transforms

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2017.07.007
  • Received Date: 07 December 2015
  • Rev Recd Date: 24 May 2016
  • Publish Date: 31 July 2017
  • Ultrasonic guided wave can reflect the material properties of the long bone. The S transform with high-resolution features was proposed to extract the feature velocity in ultrasonic guided wave, and then to reflect the mechanical properties of long bone. Firstly, S transform was performed on the long bone guided wave. Then the maximum method was used to determine the propagation time corresponding to maximum energy extreme point in time-frequency domain. According to the propagation distance, the feature velocities of different modes in ultrasonic guided wave were calculated. The simulation results show that the feature velocities are linearly correlated to bone Poisson's ratio, and is insensitive to the thickness of cortical bones. Therefore, it can be used to evaluate the bone Poisson's ratio. In addition, the method does not rely on the prior knowledge of the guided wave so that it has a certain practical value.
    Ultrasonic guided wave can reflect the material properties of the long bone. The S transform with high-resolution features was proposed to extract the feature velocity in ultrasonic guided wave, and then to reflect the mechanical properties of long bone. Firstly, S transform was performed on the long bone guided wave. Then the maximum method was used to determine the propagation time corresponding to maximum energy extreme point in time-frequency domain. According to the propagation distance, the feature velocities of different modes in ultrasonic guided wave were calculated. The simulation results show that the feature velocities are linearly correlated to bone Poisson's ratio, and is insensitive to the thickness of cortical bones. Therefore, it can be used to evaluate the bone Poisson's ratio. In addition, the method does not rely on the prior knowledge of the guided wave so that it has a certain practical value.
  • loading
  • [1]
    WEI Y M, PENG H. Study on the transmission system of high frame rate ultrasonic imaging based on the non-diffraction wave[J].Acta Physica Sinica, 2014, 63(19): 198702-198707.
    [2]
    彭虎,陆建宇,冯焕清,等. Fourier变换重建超声图像的研究[J]. 中国科学技术大学学报, 2003, 33(5): 619-624.
    PENG Hu, LU Jianyu, FENG Huanqing, et al. A study on ultrasonic image construction with Fourier transform[J]. Journal of University of Science and Technology of China, 2003, 33(5): 619-624.
    [3]
    NGUYEN K C, LE L H, TRAN T N, et al. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies[J].Ultrasonics, 2014, 54(5):1178-1185.
    [4]
    许凯亮. 超声导波评价长骨状况的研究[D].上海:复旦大学, 2012.
    [5]
    王东亚,于成龙,彭虎. 基于FPGA的合成孔径超声成像波束合成设计[J]. 中国科学技术大学学报,2014,44(2):147-152.
    WANG Dongya, YU Chenglong, PENG Hu. A synthetic aperture beam-former for ultrasound imaging based on FPGA[J]. Journal of University of Science and Technology of China, 2014, 44(2):147-152.
    [6]
    FATERI S, BOULGOURIS N V, WILKINSON A, et al. Frequency-sweep examination for wave mode identification in multimodal ultrasonic guided wave signal[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2014, 61(9):1515-1524.
    [7]
    罗春苟,他得安,王威琪.基于希尔伯特-黄变换测量超声导波的群速度及材料厚度[J].声学技术,2008, 27(5): 674-679.
    [8]
    TATARINOV A, EGOROV V, SARVAZYAN N, et al. Multi-frequency axial transmission bone ultrasonometer[J].Ultrasonics, 2014, 54(5): 1162-1169.
    [9]
    KILAPPA V, XU K L, MOILANEN P, et al. Assessment of the fundamental flexural guided wave in cortical bone by an ultrasonic axial-transmission array transducer[J].Ultrasound in Medicine & Biology, 2013, 39(7): 1223-1232.
    [10]
    MOILANEN P. Ultrasonic guided waves in bone[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2008, 55(6):1277-1286.
    [11]
    许凯亮, 谈钊, 他得安, 等. 超声导波的频散补偿与模式分离算法研究[J].声学学报, 2014, 39(1): 99-103.
    [12]
    郑祥明, 顾向华, 史立丰, 等. 超声兰姆波的时频分析[J].声学学报, 2003, 28(4): 368-374.
    [13]
    ZHANG Z G, XU K L, TA D A, et al. Joint spectrogram segmentation and ridge-extraction method for separating multimodal guided waves in long bones[J].Science China Physics, Mechanics & Astronomy, 2013, 56(7):1317-1323.
    [14]
    STOCKWELL R G, MANSINHA L, LOWE R P. Localization of the complex spectrum: The S transform[J]. IEEE Transactions on Signal Processing, 2002, 44(4): 998-1001.
    [15]
    孙家驹, 耿介.人的密质骨的力学性能[J].力学进展, 1987, 17 (2): 58-73.
    [16]
    弓健. DXA技术测量股骨颈骨强度的临床研究[D]. 广州: 暨南大学, 2013.
    [17]
    XU K L, TA D A, WANG W Q. Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones[J]. IEEE Transactions on Ultrasonics Ferroelectrics, Freq Control, 2010, 57(11):2480-2490.
  • 加载中

Catalog

    [1]
    WEI Y M, PENG H. Study on the transmission system of high frame rate ultrasonic imaging based on the non-diffraction wave[J].Acta Physica Sinica, 2014, 63(19): 198702-198707.
    [2]
    彭虎,陆建宇,冯焕清,等. Fourier变换重建超声图像的研究[J]. 中国科学技术大学学报, 2003, 33(5): 619-624.
    PENG Hu, LU Jianyu, FENG Huanqing, et al. A study on ultrasonic image construction with Fourier transform[J]. Journal of University of Science and Technology of China, 2003, 33(5): 619-624.
    [3]
    NGUYEN K C, LE L H, TRAN T N, et al. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies[J].Ultrasonics, 2014, 54(5):1178-1185.
    [4]
    许凯亮. 超声导波评价长骨状况的研究[D].上海:复旦大学, 2012.
    [5]
    王东亚,于成龙,彭虎. 基于FPGA的合成孔径超声成像波束合成设计[J]. 中国科学技术大学学报,2014,44(2):147-152.
    WANG Dongya, YU Chenglong, PENG Hu. A synthetic aperture beam-former for ultrasound imaging based on FPGA[J]. Journal of University of Science and Technology of China, 2014, 44(2):147-152.
    [6]
    FATERI S, BOULGOURIS N V, WILKINSON A, et al. Frequency-sweep examination for wave mode identification in multimodal ultrasonic guided wave signal[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2014, 61(9):1515-1524.
    [7]
    罗春苟,他得安,王威琪.基于希尔伯特-黄变换测量超声导波的群速度及材料厚度[J].声学技术,2008, 27(5): 674-679.
    [8]
    TATARINOV A, EGOROV V, SARVAZYAN N, et al. Multi-frequency axial transmission bone ultrasonometer[J].Ultrasonics, 2014, 54(5): 1162-1169.
    [9]
    KILAPPA V, XU K L, MOILANEN P, et al. Assessment of the fundamental flexural guided wave in cortical bone by an ultrasonic axial-transmission array transducer[J].Ultrasound in Medicine & Biology, 2013, 39(7): 1223-1232.
    [10]
    MOILANEN P. Ultrasonic guided waves in bone[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2008, 55(6):1277-1286.
    [11]
    许凯亮, 谈钊, 他得安, 等. 超声导波的频散补偿与模式分离算法研究[J].声学学报, 2014, 39(1): 99-103.
    [12]
    郑祥明, 顾向华, 史立丰, 等. 超声兰姆波的时频分析[J].声学学报, 2003, 28(4): 368-374.
    [13]
    ZHANG Z G, XU K L, TA D A, et al. Joint spectrogram segmentation and ridge-extraction method for separating multimodal guided waves in long bones[J].Science China Physics, Mechanics & Astronomy, 2013, 56(7):1317-1323.
    [14]
    STOCKWELL R G, MANSINHA L, LOWE R P. Localization of the complex spectrum: The S transform[J]. IEEE Transactions on Signal Processing, 2002, 44(4): 998-1001.
    [15]
    孙家驹, 耿介.人的密质骨的力学性能[J].力学进展, 1987, 17 (2): 58-73.
    [16]
    弓健. DXA技术测量股骨颈骨强度的临床研究[D]. 广州: 暨南大学, 2013.
    [17]
    XU K L, TA D A, WANG W Q. Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones[J]. IEEE Transactions on Ultrasonics Ferroelectrics, Freq Control, 2010, 57(11):2480-2490.

    Article Metrics

    Article views (495) PDF downloads(228)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return