[1] |
Chen J J, Zhu Y F, Wu C T, et al. Nanoplatform-based cascade engineering for cancer therapy. Chemical Society Reviews, 2020, 49 (24): 9057–9094. doi: 10.1039/D0CS00607F
|
[2] |
Yin N, Wang Y H, Huang Y, et al. Modulating nanozyme-based nanomachines via microenvironmental feedback for differential photothermal therapy of orthotopic gliomas. Advanced Science, 2023, 10 (3): 2204937. doi: 10.1002/advs.202204937
|
[3] |
Wang Z, Sun Q Q, Liu B, et al. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coordination Chemistry Reviews, 2021, 439: 213945. doi: 10.1016/j.ccr.2021.213945
|
[4] |
Yang K, Zhao S J, Li B L, et al. Low temperature photothermal therapy: Advances and perspectives. Coordination Chemistry Reviews, 2022, 454: 214330. doi: 10.1016/j.ccr.2021.214330
|
[5] |
Meng X F, Zhang B Y, Yi Y, et al. Accurate and real-time temperature monitoring during MR imaging guided PTT. Nano Letters, 2020, 20 (4): 2522–2529. doi: 10.1021/acs.nanolett.9b05267
|
[6] |
Xu M Z, Xue B, Wang Y, et al. Temperature-feedback nanoplatform for NIR-II penta-modal imaging-guided synergistic photothermal therapy and CAR-NK immunotherapy of lung cancer. Small, 2021, 17 (43): 2101397. doi: 10.1002/smll.202101397
|
[7] |
Yoo D, Jeong H, Noh S H, et al. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angewandte Chemie International Edition, 2013, 52 (49): 13047–13051. doi: 10.1002/anie.201306557
|
[8] |
Feng T T, Ye Y X, Liu X, et al. A robust mixed-lanthanide polyMOF membrane for ratiometric temperature sensing. Angewandte Chemie International Edition, 2020, 59 (48): 21752–21757. doi: 10.1002/anie.202009765
|
[9] |
Shen F F, Chen Y, Xu X F, et al. Supramolecular assembly with near-infrared emission for two-photon mitochondrial targeted imaging. Small, 2021, 17 (30): 2101185. doi: 10.1002/smll.202101185
|
[10] |
Wen L L, Sun K, Liu X S, et al. Electronic state and microenvironment modulation of metal nanoparticles stabilized by MOFs for boosting electrocatalytic nitrogen reduction. Advanced Materials, 2023, 35 (15): 2210669. doi: 10.1002/adma.202210669
|
[11] |
Gutiérrez M, Zhang Y, Tan J C. Confinement of luminescent guests in metal–organic frameworks: understanding pathways from synthesis and multimodal characterization to potential applications of LG@MOF systems. Chemical Reviews, 2022, 122 (11): 10438–10483. doi: 10.1021/acs.chemrev.1c00980
|
[12] |
Li B, Lu X, Tian Y P, et al. Embedding multiphoton active units within metal–organic frameworks for turning on high-order multiphoton excited fluorescence for bioimaging. Angewandte Chemie International Edition, 2022, 61 (31): e202206755. doi: 10.1002/anie.202206755
|
[13] |
Cui Y J, Li B, He H J, et al. Metal–organic frameworks as platforms for functional materials. Accounts of Chemical Research, 2016, 49 (3): 483–493. doi: 10.1021/acs.accounts.5b00530
|
[14] |
Li J Q, Li B, Yao X, et al. In situ coordination and confinement of two-photon active unit within metal–organic frameworks for high-order multiphoton-excited fluorescent performance. Inorganic Chemistry, 2022, 61 (48): 19282–19288. doi: 10.1021/acs.inorgchem.2c03045
|
[15] |
Wu Q, Du Q J, Sun X H, et al. MnMOF-based microwave-glutathione dual-responsive nano-missile for enhanced microwave Thermo-dynamic chemotherapy of drug-resistant tumors. Chemical Engineering Journal, 2022, 439: 135582. doi: 10.1016/j.cej.2022.135582
|
[16] |
Yan X Y, Pan Y X, Ji L, et al. Multifunctional metal–organic framework as a versatile nanoplatform for Aβ oligomer imaging and chemo-photothermal treatment in living cells. Analytical Chemistry, 2021, 93 (41): 13823–13834. doi: 10.1021/acs.analchem.1c02459
|
[17] |
Zhang X J, Chen Z K, Loh K P. Coordination-assisted assembly of 1-D nanostructured light-harvesting antenna. Journal of the American Chemical Society, 2009, 131 (21): 7210–7211. doi: 10.1021/ja901041d
|
[18] |
Guo X Y, Zhang M M, Qin J, et al. Revealing the effect of photothermal therapy on human breast cancer cells: a combined study from mechanical properties to membrane HSP70. ACS Applied Materials & Interfaces, 2023, 15 (18): 21965–21973. doi: 10.1021/acsami.3c02964
|
[19] |
Yao X, Pei X X, Li B, et al. Rational fabrication of a two-photon responsive metal–organic framework for enhanced photodynamic therapy. Inorganic Chemistry Frontiers, 2021, 8 (24): 5234–5239. doi: 10.1039/D1QI01056E
|
[20] |
Zheng Y, Meana Y, Mazza M M A, et al. Fluorescence switching for temperature sensing in water. Journal of the American Chemical Society, 2022, 144 (11): 4759–4763. doi: 10.1021/jacs.2c00820
|
[21] |
Tian Q W, Hu J Q, Zhu Y H, et al. Sub-10 nm Fe3O4@Cu2– xS core–shell nanoparticles for dual-modal imaging and photothermal therapy. Journal of the American Chemical Society, 2013, 135 (23): 8571–8577. doi: 10.1021/ja4013497
|
JUSTC-2024-0005 Supporting information.docx |
Figure 1. (a) SEM image of MOF-199. (b) TEM image of the Au NRs. (c) TEM image of AMPP. (d) TEM image and elemental mapping of AMPP. (e) Powder XRD patterns of simulated MOF-199, synthesized MOF-199 and AMPP. (f) BET results of MOF-199 and AMPP. (g) TGA curves of MOF-199 and AMPP. (h) UV‒vis absorption spectra of PyS, the Au NRs, MOF-199 and AMPP. Concentration: 100 μg·mL−1; solvent: deionized water.
Figure 2. (a) Illustration of the changes in the fluorescence intensity of PyS with temperature. (b) Two-photon excited fluorescence performance of PyS upon 900 nm laser excitation at different temperatures (concentration: 1 mmol·L−1; solvent: PBS; temperature: 25 °C, 30 °C, 35 °C, 40 °C, 45 °C, 50 °C). (c) Two-photon excited fluorescence spectrum of AMPP (concentration: 150 μg·mL−1; solvent: PBS; wavelength: 780–900 nm). (d) Two-photon excited fluorescence spectrum of AMPP upon 900 nm laser excitation with different input powers (concentration: 150 μg·mL−1; solvent: PBS; power: 300–900 mW). (e) Two-photon excited fluorescence spectrum of AMPP upon 900 nm laser excitation at different temperatures (concentration: 150 μg·mL−1; solvent: PBS; temperature: 25 °C, 30 °C, 35 °C, 40 °C, 45 °C, 50 °C). (f) The linear relationship between temperature and two-photon fluorescence intensity for AMPP.
Figure 3. (a) The temperature variation of AMPP with different concentrations under NIR light (900 nm, 1.0 W·cm−2) for 10 min. (b) The temperature variation of AMPP with different input power densities under 900 nm (1.0 W·cm−2) laser irradiation for 10 min. (c) Photothermal conversion performance of AMPP (150 μg·mL−1) obtained from linear time data vs. −In(θ) from the cooling period. (d) Infrared thermal images of MOF-199 (150 μg·mL−1) and AMPP (150 μg·mL−1) under 900 nm laser irradiation (1.0 W·cm−2). (e) Schematic illustration showing the temperature feedback and therapeutic process of AMPP.
Figure 4. (a) Fluorescence intensity of AMPP within HepG2 cells under 513 nm and 900 nm laser irradiation. Right: the fluorescence intensity and corresponding temperature under different irradiation times. (b) CLSM images of HepG2 cells treated with AMPP (150 μg·mL−1), and APF was used to detect the generation of •OH (AMPP: 150 μg·mL−1; H2O2: 100 μmol·L−1; scale bar: 25 μm). (c) CLSM images of AMPP-treated HepG2 cells stained with calcein-AM/PI (laser: 900 nm, 0.1 W·cm−2; AMPP: 150 μg·mL−1; H2O2: 100 μmol·L−1; scale bar: 100 μm). (d) AMPP-incubated HepG2 cells were stained with Annexin V-FITC/PI after irradiation (laser: 900 nm, 0.1 W·cm−2; AMPP: 150 μg·mL−1; scale bar: 25 μm). (e) 3D fluorescence images of MCTs subjected to different treatments (laser: 900 nm, 0.1 W·cm−2; AMPP: 150 μg·mL−1; H2O2: 100 μmol·L−1).
[1] |
Chen J J, Zhu Y F, Wu C T, et al. Nanoplatform-based cascade engineering for cancer therapy. Chemical Society Reviews, 2020, 49 (24): 9057–9094. doi: 10.1039/D0CS00607F
|
[2] |
Yin N, Wang Y H, Huang Y, et al. Modulating nanozyme-based nanomachines via microenvironmental feedback for differential photothermal therapy of orthotopic gliomas. Advanced Science, 2023, 10 (3): 2204937. doi: 10.1002/advs.202204937
|
[3] |
Wang Z, Sun Q Q, Liu B, et al. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coordination Chemistry Reviews, 2021, 439: 213945. doi: 10.1016/j.ccr.2021.213945
|
[4] |
Yang K, Zhao S J, Li B L, et al. Low temperature photothermal therapy: Advances and perspectives. Coordination Chemistry Reviews, 2022, 454: 214330. doi: 10.1016/j.ccr.2021.214330
|
[5] |
Meng X F, Zhang B Y, Yi Y, et al. Accurate and real-time temperature monitoring during MR imaging guided PTT. Nano Letters, 2020, 20 (4): 2522–2529. doi: 10.1021/acs.nanolett.9b05267
|
[6] |
Xu M Z, Xue B, Wang Y, et al. Temperature-feedback nanoplatform for NIR-II penta-modal imaging-guided synergistic photothermal therapy and CAR-NK immunotherapy of lung cancer. Small, 2021, 17 (43): 2101397. doi: 10.1002/smll.202101397
|
[7] |
Yoo D, Jeong H, Noh S H, et al. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angewandte Chemie International Edition, 2013, 52 (49): 13047–13051. doi: 10.1002/anie.201306557
|
[8] |
Feng T T, Ye Y X, Liu X, et al. A robust mixed-lanthanide polyMOF membrane for ratiometric temperature sensing. Angewandte Chemie International Edition, 2020, 59 (48): 21752–21757. doi: 10.1002/anie.202009765
|
[9] |
Shen F F, Chen Y, Xu X F, et al. Supramolecular assembly with near-infrared emission for two-photon mitochondrial targeted imaging. Small, 2021, 17 (30): 2101185. doi: 10.1002/smll.202101185
|
[10] |
Wen L L, Sun K, Liu X S, et al. Electronic state and microenvironment modulation of metal nanoparticles stabilized by MOFs for boosting electrocatalytic nitrogen reduction. Advanced Materials, 2023, 35 (15): 2210669. doi: 10.1002/adma.202210669
|
[11] |
Gutiérrez M, Zhang Y, Tan J C. Confinement of luminescent guests in metal–organic frameworks: understanding pathways from synthesis and multimodal characterization to potential applications of LG@MOF systems. Chemical Reviews, 2022, 122 (11): 10438–10483. doi: 10.1021/acs.chemrev.1c00980
|
[12] |
Li B, Lu X, Tian Y P, et al. Embedding multiphoton active units within metal–organic frameworks for turning on high-order multiphoton excited fluorescence for bioimaging. Angewandte Chemie International Edition, 2022, 61 (31): e202206755. doi: 10.1002/anie.202206755
|
[13] |
Cui Y J, Li B, He H J, et al. Metal–organic frameworks as platforms for functional materials. Accounts of Chemical Research, 2016, 49 (3): 483–493. doi: 10.1021/acs.accounts.5b00530
|
[14] |
Li J Q, Li B, Yao X, et al. In situ coordination and confinement of two-photon active unit within metal–organic frameworks for high-order multiphoton-excited fluorescent performance. Inorganic Chemistry, 2022, 61 (48): 19282–19288. doi: 10.1021/acs.inorgchem.2c03045
|
[15] |
Wu Q, Du Q J, Sun X H, et al. MnMOF-based microwave-glutathione dual-responsive nano-missile for enhanced microwave Thermo-dynamic chemotherapy of drug-resistant tumors. Chemical Engineering Journal, 2022, 439: 135582. doi: 10.1016/j.cej.2022.135582
|
[16] |
Yan X Y, Pan Y X, Ji L, et al. Multifunctional metal–organic framework as a versatile nanoplatform for Aβ oligomer imaging and chemo-photothermal treatment in living cells. Analytical Chemistry, 2021, 93 (41): 13823–13834. doi: 10.1021/acs.analchem.1c02459
|
[17] |
Zhang X J, Chen Z K, Loh K P. Coordination-assisted assembly of 1-D nanostructured light-harvesting antenna. Journal of the American Chemical Society, 2009, 131 (21): 7210–7211. doi: 10.1021/ja901041d
|
[18] |
Guo X Y, Zhang M M, Qin J, et al. Revealing the effect of photothermal therapy on human breast cancer cells: a combined study from mechanical properties to membrane HSP70. ACS Applied Materials & Interfaces, 2023, 15 (18): 21965–21973. doi: 10.1021/acsami.3c02964
|
[19] |
Yao X, Pei X X, Li B, et al. Rational fabrication of a two-photon responsive metal–organic framework for enhanced photodynamic therapy. Inorganic Chemistry Frontiers, 2021, 8 (24): 5234–5239. doi: 10.1039/D1QI01056E
|
[20] |
Zheng Y, Meana Y, Mazza M M A, et al. Fluorescence switching for temperature sensing in water. Journal of the American Chemical Society, 2022, 144 (11): 4759–4763. doi: 10.1021/jacs.2c00820
|
[21] |
Tian Q W, Hu J Q, Zhu Y H, et al. Sub-10 nm Fe3O4@Cu2– xS core–shell nanoparticles for dual-modal imaging and photothermal therapy. Journal of the American Chemical Society, 2013, 135 (23): 8571–8577. doi: 10.1021/ja4013497
|