[1] |
COHEN L, AVRAHAMI-BAKISH G, LAST M, et al. Real-time data mining of non-stationary data streams from sensor networks[J]. Information Fusion, 2008, 9(3): 344-353.
|
[2] |
WANG H X, FAN W, YU P S, et al. Mining concept-drifting data streams using ensembles classifiers[C]// Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2003: 226-235.
|
[3] |
ELWELL R, POLIKAR R. Incremental learning of concept drift in nonstationary environments[J]. IEEE Transactions on Neural Networks, 2011, 22(10): 1517-1531.
|
[4] |
GAMA J. Knowledge Discovery from Data Streams[M]. New York: CRC Press, 2010.
|
[5] |
WIDMER G, KUBAT M. Learning in the presence of concept drift and hidden contexts[J]. Machine Learning, 1996, 23(1): 69-101.
|
[6] |
TSYMBAL A. The problem of concept drift: Definitions and related work[R]. Department of Computer Science, Trinity College, Dublin, Ireland, 2004.
|
[7] |
GAMA J, LIOBAIT I, BIFET A, et al. A survey on concept drift adaptation[J]. ACM Computing Surveys, 2014, 46(4): 231-238.
|
[8] |
亓开元,赵卓峰,房俊,等. 针对高速数据流的大规模数据实时处理方法[J]. 计算机学报. 2012, 35(3): 477-490.QI Kaiyuan, ZHAO Zhuofeng, FANG Jun, et al. Real-time processing for high speed data stream over lame scale data[J]. Chinese Journal of Computers, 2012, 35(3): 477-490.
|
[9] |
GAMA J, MEDAS P, CASTILLO G, et al. Learning with drift detection[C]// Proceedings of the 17th Brazilian Symposium on Artificial Intelligence. Berlin: Springer-Verlag, 2004: 286-295.
|
[10] |
BAENA-GARCA M, CAMPO-VILA J D, FIDALGO R, et al. Early drift detection method[C]// Proceedings of the 4th International Workshop on Knowledge Discovery from Data Streams. New York: ACM Press, 2006: 77-86.
|
[11] |
NISHIDA K, YAMAUCHI K. Detecting concept drift using statistical testing[C]// Proceedings of the 10th International Conference on Discovery Science. Sendai, Japan: Springer-Verlag, 2007: 264-269.
|
[12] |
BIFET A, GAVALD R. Learning from time-changing data with adaptive windowing[C]// Proceedings of the 7th SIAM International Conference on Data Mining. Philadelphia, PA: SIAM Press, 2007: 443-448.
|
[13] |
ROSS G J, ADAMS N M, TASOULIS D K, et al. Exponentially weighted moving average charts for detecting concept drift[J]. Pattern Recognition Letters, 2012, 33(2): 191-198.
|
[14] |
RAMAMURTHY S, BHATNAGAR R. Tracking recurrent concept drift in streaming data using ensemble classifiers[C]// Proceedings of the 6th International Conference on Machine Learning and Applications. Cincinnati, USA: IEEE Press, 2007: 404-409.
|
[15] |
KATAKIS I, TSOUMAKAS G, VLAHAVAS I. Tracking recurring contexts using ensemble classifiers: An application to email filtering[J]. Knowledge and Information Systems, 2010, 22(3): 371-391.
|
[16] |
YANG Y, WU X D, ZHU X Q. Mining in anticipation for concept change: Proactive-reactive prediction in data streams[J]. Data Mining and Knowledge Discovery, 2006, 13(3): 261-289.
|
[17] |
GAMA J, KOSINA P. Recurrent concepts in data streams classification[J]. Knowledge and Information Systems, 2014, 40(3): 489-507.
|
[18] |
GONALVES P M, DE BARROS R S M. RCD: A recurring concept drift framework[J]. Pattern Recognition Letters, 2013, 34(9): 1018-1025.
|
[19] |
DATAR M, GIONIS A, INDYK P, et al. Maintaining stream statistics over sliding windows[J]. SIAM Journal on Computing, 2002, 31(6): 1794-1813.
|
[20] |
DASU, T, KRISHNAN S, VENKATASUBRAMANIAN S, et al. An information-theoretic approach to detecting changes in multi-dimensional data streams[C]// Proceedings of the 38th Symposium on the Interface of Statistics, Computing Science, and Applications. Pasadena, USA: IEEE Press, 2006: 1-24.
|
[21] |
BIFET A, HOLMES G, KIRKBY R, et al. MOA: Massive online analysis[J]. Journal of Machine Learning Research, 2010, 11(2): 1601-1604.
|
[22] |
DOMINGOS P, HULTEN G. Mining high-speed data streams[C]// Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston, USA: ACM Press, 2000: 71-80.
|
[1] |
COHEN L, AVRAHAMI-BAKISH G, LAST M, et al. Real-time data mining of non-stationary data streams from sensor networks[J]. Information Fusion, 2008, 9(3): 344-353.
|
[2] |
WANG H X, FAN W, YU P S, et al. Mining concept-drifting data streams using ensembles classifiers[C]// Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2003: 226-235.
|
[3] |
ELWELL R, POLIKAR R. Incremental learning of concept drift in nonstationary environments[J]. IEEE Transactions on Neural Networks, 2011, 22(10): 1517-1531.
|
[4] |
GAMA J. Knowledge Discovery from Data Streams[M]. New York: CRC Press, 2010.
|
[5] |
WIDMER G, KUBAT M. Learning in the presence of concept drift and hidden contexts[J]. Machine Learning, 1996, 23(1): 69-101.
|
[6] |
TSYMBAL A. The problem of concept drift: Definitions and related work[R]. Department of Computer Science, Trinity College, Dublin, Ireland, 2004.
|
[7] |
GAMA J, LIOBAIT I, BIFET A, et al. A survey on concept drift adaptation[J]. ACM Computing Surveys, 2014, 46(4): 231-238.
|
[8] |
亓开元,赵卓峰,房俊,等. 针对高速数据流的大规模数据实时处理方法[J]. 计算机学报. 2012, 35(3): 477-490.QI Kaiyuan, ZHAO Zhuofeng, FANG Jun, et al. Real-time processing for high speed data stream over lame scale data[J]. Chinese Journal of Computers, 2012, 35(3): 477-490.
|
[9] |
GAMA J, MEDAS P, CASTILLO G, et al. Learning with drift detection[C]// Proceedings of the 17th Brazilian Symposium on Artificial Intelligence. Berlin: Springer-Verlag, 2004: 286-295.
|
[10] |
BAENA-GARCA M, CAMPO-VILA J D, FIDALGO R, et al. Early drift detection method[C]// Proceedings of the 4th International Workshop on Knowledge Discovery from Data Streams. New York: ACM Press, 2006: 77-86.
|
[11] |
NISHIDA K, YAMAUCHI K. Detecting concept drift using statistical testing[C]// Proceedings of the 10th International Conference on Discovery Science. Sendai, Japan: Springer-Verlag, 2007: 264-269.
|
[12] |
BIFET A, GAVALD R. Learning from time-changing data with adaptive windowing[C]// Proceedings of the 7th SIAM International Conference on Data Mining. Philadelphia, PA: SIAM Press, 2007: 443-448.
|
[13] |
ROSS G J, ADAMS N M, TASOULIS D K, et al. Exponentially weighted moving average charts for detecting concept drift[J]. Pattern Recognition Letters, 2012, 33(2): 191-198.
|
[14] |
RAMAMURTHY S, BHATNAGAR R. Tracking recurrent concept drift in streaming data using ensemble classifiers[C]// Proceedings of the 6th International Conference on Machine Learning and Applications. Cincinnati, USA: IEEE Press, 2007: 404-409.
|
[15] |
KATAKIS I, TSOUMAKAS G, VLAHAVAS I. Tracking recurring contexts using ensemble classifiers: An application to email filtering[J]. Knowledge and Information Systems, 2010, 22(3): 371-391.
|
[16] |
YANG Y, WU X D, ZHU X Q. Mining in anticipation for concept change: Proactive-reactive prediction in data streams[J]. Data Mining and Knowledge Discovery, 2006, 13(3): 261-289.
|
[17] |
GAMA J, KOSINA P. Recurrent concepts in data streams classification[J]. Knowledge and Information Systems, 2014, 40(3): 489-507.
|
[18] |
GONALVES P M, DE BARROS R S M. RCD: A recurring concept drift framework[J]. Pattern Recognition Letters, 2013, 34(9): 1018-1025.
|
[19] |
DATAR M, GIONIS A, INDYK P, et al. Maintaining stream statistics over sliding windows[J]. SIAM Journal on Computing, 2002, 31(6): 1794-1813.
|
[20] |
DASU, T, KRISHNAN S, VENKATASUBRAMANIAN S, et al. An information-theoretic approach to detecting changes in multi-dimensional data streams[C]// Proceedings of the 38th Symposium on the Interface of Statistics, Computing Science, and Applications. Pasadena, USA: IEEE Press, 2006: 1-24.
|
[21] |
BIFET A, HOLMES G, KIRKBY R, et al. MOA: Massive online analysis[J]. Journal of Machine Learning Research, 2010, 11(2): 1601-1604.
|
[22] |
DOMINGOS P, HULTEN G. Mining high-speed data streams[C]// Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston, USA: ACM Press, 2000: 71-80.
|