[1] |
BZIER P. The Mathematical Basis of the UNISURF CAD System[M]. London: Butterworth, 1986.
|
[2] |
BOOR C. B-form basics[M]// Geometric Modeling. Philadelphia: SIAM, 1987: 131-148.
|
[3] |
CHUI C. Multivariate Splines[M]. Philadelphia: SIAM, 1988.
|
[4] |
DENG J, CHEN F, FENG Y. Dimensions of spline spaces over T-meshes[J]. J Comput Appl Math, 2006, 194(2): 267-283.
|
[5] |
DENG J, CHEN F, LI X. Polynomial splines over hierarchical T-meshes[J]. Graphical Models, 2008, 74(4): 76-86.
|
[6] |
DIERCK P, TYTGAT B. Generating the Bézier points of BETA-spline curve[J]. Comput Aided Geom Des, 1989, 6(4): 279-291.
|
[7] |
FARIN G. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide[M]. fifth ed. Menlo Park: Morgan Kaufman, 2002.
|
[8] |
KONNO K, CHIYOKURA H. An approach of designing and controlling free-form surfaces by using NURBS boundary Gregory patches[J]. Comput Aided Geom Des, 1996, 13(9): 825-849.
|
[9] |
MLER R. Universal parametrization and interpolation on cubic surfaces[J]. Comput Aided Geom Des, 2002, 19(7): 479-502.
|
[10] |
PIEGL L. On NURBS: A survey[J]. IEEE Comput Graph Appl, 1991, 11(1): 55-71.
|
[11] |
SEDERBERG T, ZHENG J, BAKENOV A, et al. T-splines and T-NURCCS[J]. ACM Transactions on Graphics, 2003, 22(3): 477-484.
|
[12] |
TAN J, TANG S. Composite schemes for multivariate blending rational interpolation[J]. J Comput Appl Math, 2002, 144(1-2): 263-275.
|
[13] |
WANG R. Multivariate Spline Functions and Their Applications[M]. Beijing/ New York/ Dordrecht/ Boston/ London: Kluwer Academic Publishers, 2001.
|
[14] |
BAO F, SUN Q, DUAN Q. Point control of the interpolating curve with a rational cubic spline[J]. J Vis Commun Image R, 2009, 20(4): 275-280.
|
[15] |
BAO F, SUN Q, PAN J, et al. A blending interpolator with value control and minimal strain energy[J]. Comput Graph, 2010, 34(2): 119-124.
|
[16] |
DELBOURGO R. Shape preserving interpolation to convex data by rational functions with quadratic numerator and linear denominator[J]. IMA J Numer Anal, 1989, 9(1): 23-136.
|
[17] |
DUAN Q, DJIDJELI K, PRICE W, et al. The approximation properties of some rational cubic splines[J]. Int J Comput Math, 1999, 72(2): 155-166.
|
[18] |
DUAN Q, BAO F, DU S, et al. Local control of interpolating rational cubic spline curves[J]. Comput Aided Des, 2009, 41(11): 825-829.
|
[19] |
GREGORY J,SARFRAZ M, YUEN P. Interactive curve design using C2 rational splines[J]. Comput Graph, 1994, 18(2): 153-159.
|
[20] |
HAN X. Convexity preserving piecewise rational quartic interpolation[J]. SIAM J Numer Anal, 2008, 46(2): 920-929.
|
[21] |
SARFRAZ M. A C2 rational cubic spline which has linear denominator and shape control[J]. Ann Univ Sci Budapest, 1994, 37: 53-62.
|
[22] |
ABBAS M, MAJID A, ALI J. Positivity-preserving rational bi-cubic spline interpolation for 3D positive data[J]. Appl Math Comput, 2014, 234: 460-476
|
[23] |
DUAN Q, WANG L, TWIZELL E. A new bivariate rational interpolation based on function values[J]. Inf Sci, 2004, 166(1-4): 181-191.
|
[24] |
DUAN Q, WANG L, TWIZELL E. A new weighted rational cubic interpolation and its approximation[J]. Appl Math Comput, 2005, 168(2): 990-1003.
|
[25] |
DUAN Q, ZHANG Y, TWIZELL E. A bivariate rational interpolation and the properties[J]. Appl Math Comput, 2006, 179(1): 190-199.
|
[26] |
DUAN Q, LI S, BAO F, et al. Hermite interpolation by piecewise rational surface[J]. Appl Math Comput, 2008, 198(1): 59-72.
|
[27] |
HUSSAIN M, SARFRAZ M. Positivity-preserving interpolation of positive data by rational cubics[J]. J Comput Appl Math, 2008, 218(2): 446-458.
|
[28] |
ZHANG Y, DUAN Q, TWIZELL E. Convexity control of a bivariate rational interpolating spline surfaces[J]. Comput Graph, 2007, 31(5): 679-687.
|
[1] |
BZIER P. The Mathematical Basis of the UNISURF CAD System[M]. London: Butterworth, 1986.
|
[2] |
BOOR C. B-form basics[M]// Geometric Modeling. Philadelphia: SIAM, 1987: 131-148.
|
[3] |
CHUI C. Multivariate Splines[M]. Philadelphia: SIAM, 1988.
|
[4] |
DENG J, CHEN F, FENG Y. Dimensions of spline spaces over T-meshes[J]. J Comput Appl Math, 2006, 194(2): 267-283.
|
[5] |
DENG J, CHEN F, LI X. Polynomial splines over hierarchical T-meshes[J]. Graphical Models, 2008, 74(4): 76-86.
|
[6] |
DIERCK P, TYTGAT B. Generating the Bézier points of BETA-spline curve[J]. Comput Aided Geom Des, 1989, 6(4): 279-291.
|
[7] |
FARIN G. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide[M]. fifth ed. Menlo Park: Morgan Kaufman, 2002.
|
[8] |
KONNO K, CHIYOKURA H. An approach of designing and controlling free-form surfaces by using NURBS boundary Gregory patches[J]. Comput Aided Geom Des, 1996, 13(9): 825-849.
|
[9] |
MLER R. Universal parametrization and interpolation on cubic surfaces[J]. Comput Aided Geom Des, 2002, 19(7): 479-502.
|
[10] |
PIEGL L. On NURBS: A survey[J]. IEEE Comput Graph Appl, 1991, 11(1): 55-71.
|
[11] |
SEDERBERG T, ZHENG J, BAKENOV A, et al. T-splines and T-NURCCS[J]. ACM Transactions on Graphics, 2003, 22(3): 477-484.
|
[12] |
TAN J, TANG S. Composite schemes for multivariate blending rational interpolation[J]. J Comput Appl Math, 2002, 144(1-2): 263-275.
|
[13] |
WANG R. Multivariate Spline Functions and Their Applications[M]. Beijing/ New York/ Dordrecht/ Boston/ London: Kluwer Academic Publishers, 2001.
|
[14] |
BAO F, SUN Q, DUAN Q. Point control of the interpolating curve with a rational cubic spline[J]. J Vis Commun Image R, 2009, 20(4): 275-280.
|
[15] |
BAO F, SUN Q, PAN J, et al. A blending interpolator with value control and minimal strain energy[J]. Comput Graph, 2010, 34(2): 119-124.
|
[16] |
DELBOURGO R. Shape preserving interpolation to convex data by rational functions with quadratic numerator and linear denominator[J]. IMA J Numer Anal, 1989, 9(1): 23-136.
|
[17] |
DUAN Q, DJIDJELI K, PRICE W, et al. The approximation properties of some rational cubic splines[J]. Int J Comput Math, 1999, 72(2): 155-166.
|
[18] |
DUAN Q, BAO F, DU S, et al. Local control of interpolating rational cubic spline curves[J]. Comput Aided Des, 2009, 41(11): 825-829.
|
[19] |
GREGORY J,SARFRAZ M, YUEN P. Interactive curve design using C2 rational splines[J]. Comput Graph, 1994, 18(2): 153-159.
|
[20] |
HAN X. Convexity preserving piecewise rational quartic interpolation[J]. SIAM J Numer Anal, 2008, 46(2): 920-929.
|
[21] |
SARFRAZ M. A C2 rational cubic spline which has linear denominator and shape control[J]. Ann Univ Sci Budapest, 1994, 37: 53-62.
|
[22] |
ABBAS M, MAJID A, ALI J. Positivity-preserving rational bi-cubic spline interpolation for 3D positive data[J]. Appl Math Comput, 2014, 234: 460-476
|
[23] |
DUAN Q, WANG L, TWIZELL E. A new bivariate rational interpolation based on function values[J]. Inf Sci, 2004, 166(1-4): 181-191.
|
[24] |
DUAN Q, WANG L, TWIZELL E. A new weighted rational cubic interpolation and its approximation[J]. Appl Math Comput, 2005, 168(2): 990-1003.
|
[25] |
DUAN Q, ZHANG Y, TWIZELL E. A bivariate rational interpolation and the properties[J]. Appl Math Comput, 2006, 179(1): 190-199.
|
[26] |
DUAN Q, LI S, BAO F, et al. Hermite interpolation by piecewise rational surface[J]. Appl Math Comput, 2008, 198(1): 59-72.
|
[27] |
HUSSAIN M, SARFRAZ M. Positivity-preserving interpolation of positive data by rational cubics[J]. J Comput Appl Math, 2008, 218(2): 446-458.
|
[28] |
ZHANG Y, DUAN Q, TWIZELL E. Convexity control of a bivariate rational interpolating spline surfaces[J]. Comput Graph, 2007, 31(5): 679-687.
|