ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Visualization of multi-dimensional sparse spatial-temporal data

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2017.07.003
  • Received Date: 28 August 2016
  • Rev Recd Date: 08 December 2016
  • Publish Date: 31 July 2017
  • Multi-dimensionality and sparseness of spatial-temporal data are major challenges for data analysis. Data visualization can effectively address certain data analysis challenges and has increasingly drawn attention from both industry and academia. A hybrid approach for the visualization of multi-dimensional sparse spatial-temporal data was proposed. The method combined multiple data view models and human-machine interaction mechanisms in order to intuitively express the multi-dimensional features, statistical group features, as well as typical individual behavior patterns. Furthermore, a visual analysis method was introduced for the identification and detection of abnormal individual behaviors. A data visualization system based on gas filling data gathered from gas stations in Xinjiang Province was implemented. By using different view models (parallel coordinates, map view, calendar matrix, Sankey
    Multi-dimensionality and sparseness of spatial-temporal data are major challenges for data analysis. Data visualization can effectively address certain data analysis challenges and has increasingly drawn attention from both industry and academia. A hybrid approach for the visualization of multi-dimensional sparse spatial-temporal data was proposed. The method combined multiple data view models and human-machine interaction mechanisms in order to intuitively express the multi-dimensional features, statistical group features, as well as typical individual behavior patterns. Furthermore, a visual analysis method was introduced for the identification and detection of abnormal individual behaviors. A data visualization system based on gas filling data gathered from gas stations in Xinjiang Province was implemented. By using different view models (parallel coordinates, map view, calendar matrix, Sankey
  • loading
  • [1]
    KEIM D, ANDRIENKO G, FEKETE J D, et al. Visual Analytics: Defi-Nition, Process, and Challenge[M] //Lecture Notes in Computer Science. Heidelberg: Springer, 2008, 4950: 154-175.
    [2]
    姜晓睿, 郑春益, 蒋莉,等. 大规模出租车起止点数据可视分析[J]. 计算机辅助设计与图形学学报, 2015, 27(10): 1907-1917.
    JIANG Xiaorui, ZHWNG Chunyi, JIANG Li, et al. Visual analysis of large taxi origin-destination data[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(10): 1907-1917.
    [3]
    WANG Z C, YE T Z, LU M, et al. Visual exploration of sparse traffic trajectory data[J]. IEEE Transactions on Visualization & Computer Graphics, 2014, 20(12): 1813-1822.
    [4]
    DEKA L, QUDDUS M. Trip-based weighted trajectory matching algorithm for sparse GPS data[R]. Transportation Research Board Annual Meeting, http://transp-or.epfl.ch/heart/2014/abstracts/268.pdf,2015.
    [5]
    SANAULLAH I, QUDDUS M, ENOCH M P. Developing travel time estimation methods using sparse GPS data[J]. Journal of Intelligent Transportation Systems, 2016, 20(6): 532-544.
    [6]
    WANG Y, ZHENG Y, XUE Y. Travel time estimation of a path using sparse trajectories[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 25-34.
    [7]
    任磊, 杜一, 马帅,等. 大数据可视分析综述[J]. 软件学报, 2014, 25(9): 1909-1936.
    [8]
    HEY T, GANNON D, PINKELMAN J. The future of data-intensive science[J]. Computer, 2012, 45(5): 81-82.
    [9]
    PEUQUET D J, KRAAK M J. GeoBrowsing: Creative thinking and knowledge discovery using geographic visualization[J]. Information Visualization, 2002, 1(1): 80-91.
    [10]
    SLINGSBY A, DYKES J, WOOD J. Exploring uncertainty in geoDemoGraphics with interactive graphics[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2545-2554.
    [11]
    INSELBERG A. The plane with parallel coordinates [J]. The Visual Computer, 1985, 1(2): 69-91.
    [12]
    VON LANDESBERGER T, BRODKORB F, ROSKOSCH P, et al. MobilityGraphs: Visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering[J]. IEEE Transactions on Visualization & Computer Graphics, 2016, 22(1):11-20.
    [13]
    ANDRIENKO G L, ANDRIENKO N V, DYKES J, et al. GeoVisualization of dynamics, movement and change: Key issues and developing approaches in visualization research[J]. Information Visualization, 2008, 7(3): 173-180.
    [14]
    LUNDBLAD P, EURENIUS O, HELDRING T. Interactive visualization of weather and ship data[C]// Proceedings of the 13th International Conference on Information Visualisation. Barcelona, Spain: IEEE Press, 2009: 379-386.
    [15]
    OpenDataCity. Visitor flow analysis by public wireless[EB/OL]. http://apps.opendatacity.de/relog/,2013.
    [16]
    THUDT A, BAUR D, CARPENDALE S. Visits: A spatiotemporal visualization of location histories[J]. Journal of Heat Transfer, 2013, 114(1): 255-163.
    [17]
    TOMINSKI C, SCHUMANN H, ANDRIENKO G, et al. Stacking-based visualization of trajectory attribute data[J]. IEEE Transactions on Visualization Computer Graphics, 2012, 18(12): 2565-2574.
    [18]
    KAPLER T, WRIGHT W. GeoTime information visualization[C]// Proceedings of the IEEE Symposium on Information Visualization. Austin, USA: IEEE Press, 2004: 25-32.
    [19]
    STOLL M, KRGER R, ERTL T, et al. Racecar tracking and its visualization using sparse data[C/OL]// Proceedings of the Workshop on Sports Data Visualization, http://www.vis.uni-stuttgart.de/~cvis/publications/stoll_sportvis2013.pdf.
    [20]
    GUO H Q, WANG Z C, YU B W, et al. TripVista: Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection[C]// Proceedings of Pacific Visualization Symposium. Los Alamitos: IEEE Computer Society, 2011: 163-170.
    [21]
    BYRON L, WATTENBERG M. Stacked graphs-geometry & aesthetics[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1245-1252.
    [22]
    WILLEMS N, VAN DE WETERING H, VAN WIJK J J. Visualization of vessel movements[J]. Computer Graph Forum, 2009, 28(3): 959-966.
    [23]
    WANG Z C, GUO H Q, YUAN X R, et al. Discovery exhibition: Visual analysis on traffic trajectory data[EB/OL]. [2014-09-24]. http://discovery exhibition.org/uploads/Main/2011Wang.pdf.
    [24]
    LIU H, GAO Y, LU L, et al. Visual analysis of route diversity[C]// Proceedings of the IEEE Conference on Visual Analytics Science and Technology. Los Alamitos: IEEE Computer Society, 2011: 171-180.
    [25]
    WANG Z C, LU M, YUAN X R, et al. Visual traffic jam analysis based on trajectory data[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2159-2168.
    [26]
    KRGER R, THOM D, WRNER M, et al. TrajectoryLenses—A set-based filtering and exploration technique for long-term trajectory data[J]. Computer Graphics Forum, 2013, 32(3/4): 451-460.
    [27]
    PU J S, LIU S Y, DING Y, et al. T-Watcher: A new visual analytic system for effective traffic surveillance[C]// Proceedings IEEE 14th International Conference on Mobile Data Management. Los Alamitos: IEEE Computer Society, 2013, 1:127-136.
    [28]
    RIEHMANN P, HANFLER M, FROEHLICH B. Interactive sankey diagrams[C/OL]. Proceedings of the IEEE Symposium on Information Visualization. Minneapolis, USA: IEEE Press, 2005. https://static.aminer.org/pdf/PDF/000/404/817/interactive_sankey_diagrams.pdf.
    [29]
    SZMIDT E, KACPRZYK J. On an enhanced method for a more meaningful Pearson’s correlation coefficient between intuitionistic fuzzy sets[C]// Proceedings of the 11th International Conference on Artificial Intelligence & Soft Computing. Zakopane, Poland: Springer-Verlag, 2012: 334-341.
  • 加载中

Catalog

    [1]
    KEIM D, ANDRIENKO G, FEKETE J D, et al. Visual Analytics: Defi-Nition, Process, and Challenge[M] //Lecture Notes in Computer Science. Heidelberg: Springer, 2008, 4950: 154-175.
    [2]
    姜晓睿, 郑春益, 蒋莉,等. 大规模出租车起止点数据可视分析[J]. 计算机辅助设计与图形学学报, 2015, 27(10): 1907-1917.
    JIANG Xiaorui, ZHWNG Chunyi, JIANG Li, et al. Visual analysis of large taxi origin-destination data[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(10): 1907-1917.
    [3]
    WANG Z C, YE T Z, LU M, et al. Visual exploration of sparse traffic trajectory data[J]. IEEE Transactions on Visualization & Computer Graphics, 2014, 20(12): 1813-1822.
    [4]
    DEKA L, QUDDUS M. Trip-based weighted trajectory matching algorithm for sparse GPS data[R]. Transportation Research Board Annual Meeting, http://transp-or.epfl.ch/heart/2014/abstracts/268.pdf,2015.
    [5]
    SANAULLAH I, QUDDUS M, ENOCH M P. Developing travel time estimation methods using sparse GPS data[J]. Journal of Intelligent Transportation Systems, 2016, 20(6): 532-544.
    [6]
    WANG Y, ZHENG Y, XUE Y. Travel time estimation of a path using sparse trajectories[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 25-34.
    [7]
    任磊, 杜一, 马帅,等. 大数据可视分析综述[J]. 软件学报, 2014, 25(9): 1909-1936.
    [8]
    HEY T, GANNON D, PINKELMAN J. The future of data-intensive science[J]. Computer, 2012, 45(5): 81-82.
    [9]
    PEUQUET D J, KRAAK M J. GeoBrowsing: Creative thinking and knowledge discovery using geographic visualization[J]. Information Visualization, 2002, 1(1): 80-91.
    [10]
    SLINGSBY A, DYKES J, WOOD J. Exploring uncertainty in geoDemoGraphics with interactive graphics[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2545-2554.
    [11]
    INSELBERG A. The plane with parallel coordinates [J]. The Visual Computer, 1985, 1(2): 69-91.
    [12]
    VON LANDESBERGER T, BRODKORB F, ROSKOSCH P, et al. MobilityGraphs: Visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering[J]. IEEE Transactions on Visualization & Computer Graphics, 2016, 22(1):11-20.
    [13]
    ANDRIENKO G L, ANDRIENKO N V, DYKES J, et al. GeoVisualization of dynamics, movement and change: Key issues and developing approaches in visualization research[J]. Information Visualization, 2008, 7(3): 173-180.
    [14]
    LUNDBLAD P, EURENIUS O, HELDRING T. Interactive visualization of weather and ship data[C]// Proceedings of the 13th International Conference on Information Visualisation. Barcelona, Spain: IEEE Press, 2009: 379-386.
    [15]
    OpenDataCity. Visitor flow analysis by public wireless[EB/OL]. http://apps.opendatacity.de/relog/,2013.
    [16]
    THUDT A, BAUR D, CARPENDALE S. Visits: A spatiotemporal visualization of location histories[J]. Journal of Heat Transfer, 2013, 114(1): 255-163.
    [17]
    TOMINSKI C, SCHUMANN H, ANDRIENKO G, et al. Stacking-based visualization of trajectory attribute data[J]. IEEE Transactions on Visualization Computer Graphics, 2012, 18(12): 2565-2574.
    [18]
    KAPLER T, WRIGHT W. GeoTime information visualization[C]// Proceedings of the IEEE Symposium on Information Visualization. Austin, USA: IEEE Press, 2004: 25-32.
    [19]
    STOLL M, KRGER R, ERTL T, et al. Racecar tracking and its visualization using sparse data[C/OL]// Proceedings of the Workshop on Sports Data Visualization, http://www.vis.uni-stuttgart.de/~cvis/publications/stoll_sportvis2013.pdf.
    [20]
    GUO H Q, WANG Z C, YU B W, et al. TripVista: Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection[C]// Proceedings of Pacific Visualization Symposium. Los Alamitos: IEEE Computer Society, 2011: 163-170.
    [21]
    BYRON L, WATTENBERG M. Stacked graphs-geometry & aesthetics[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1245-1252.
    [22]
    WILLEMS N, VAN DE WETERING H, VAN WIJK J J. Visualization of vessel movements[J]. Computer Graph Forum, 2009, 28(3): 959-966.
    [23]
    WANG Z C, GUO H Q, YUAN X R, et al. Discovery exhibition: Visual analysis on traffic trajectory data[EB/OL]. [2014-09-24]. http://discovery exhibition.org/uploads/Main/2011Wang.pdf.
    [24]
    LIU H, GAO Y, LU L, et al. Visual analysis of route diversity[C]// Proceedings of the IEEE Conference on Visual Analytics Science and Technology. Los Alamitos: IEEE Computer Society, 2011: 171-180.
    [25]
    WANG Z C, LU M, YUAN X R, et al. Visual traffic jam analysis based on trajectory data[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2159-2168.
    [26]
    KRGER R, THOM D, WRNER M, et al. TrajectoryLenses—A set-based filtering and exploration technique for long-term trajectory data[J]. Computer Graphics Forum, 2013, 32(3/4): 451-460.
    [27]
    PU J S, LIU S Y, DING Y, et al. T-Watcher: A new visual analytic system for effective traffic surveillance[C]// Proceedings IEEE 14th International Conference on Mobile Data Management. Los Alamitos: IEEE Computer Society, 2013, 1:127-136.
    [28]
    RIEHMANN P, HANFLER M, FROEHLICH B. Interactive sankey diagrams[C/OL]. Proceedings of the IEEE Symposium on Information Visualization. Minneapolis, USA: IEEE Press, 2005. https://static.aminer.org/pdf/PDF/000/404/817/interactive_sankey_diagrams.pdf.
    [29]
    SZMIDT E, KACPRZYK J. On an enhanced method for a more meaningful Pearson’s correlation coefficient between intuitionistic fuzzy sets[C]// Proceedings of the 11th International Conference on Artificial Intelligence & Soft Computing. Zakopane, Poland: Springer-Verlag, 2012: 334-341.

    Article Metrics

    Article views (524) PDF downloads(224)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return