[1] |
BOSE R C. Strongly regular graphs, partial geometries, and partially balanced designs[J]. Pacific J Math, 1963, 13: 389-419.
|
[2] |
NEUMAIER A. Strongly regular graphs with least eigenvalue-m[J]. Arch Math, 1979, 33: 392-400.
|
[3] |
GRAHAM R L, LOVSZ L. Distance matrix polynomials of trees[J]. Adv Math, 1978, 29: 60-88.
|
[4] |
AZARIJA J. A short note on a short remark of Graham and Lovász[J]. Discrete Math, 2014, 315: 65-68.
|
[5] |
BROUWER A E, COHEN A M, NEUMAIER A. Distance-Regular Graphs[M]. Berlin: Springer-Verlag, 1989.
|
[6] |
BUSSEMAKER F C, HAEMERS W H, MATHON R, et al. A (49, 16, 3, 6) strongly regular graph does not exist[J]. European Journal of Combinatorics, 1989, 10: 413-418.
|
[7] |
DEGRAER J. Isomorph-free exhaustive generation algorithms for association schemes[D]. Ghent, Belgium: Ghent University, 2007.
|
[8] |
GODSIL C, Royle G. Algebraic Graph Theory[M]. New York: Springer-Verlag, 2001.
|
[9] |
BONDARENKO A V, PRYMAK A, RADCHENKO D. Non-existence of (76,30,8,14) strongly regular graph and some structural tools[DB/OL]. arXiv:1410.6748.
|
[10] |
HAEMERS W. There exists no (76, 21, 2, 7) strongly regular graph[C]// Finite Geometry and Combinatorics. Cambridge: Cambridge University Press, 1993: 175-176.
|
[11] |
HAEMERS W H. Matrix techniques for strongly regular graphs and related geometries[EB/OL]. [2015-10-10]http://cage.ugent.be/fdc/intensivecourse2/haemers2.pdf.
|
[12] |
SCOT L L JR. A condition on Higman’s parameters[J]. Notices Amer Math Soc, 1973, 701: 20-45.
|
[13] |
BROUWER A E. Parameters of strongly regular graphs[EB/OL]. [2015-10-10]https://www.win.tue.nl/ aeb/graphs/srg/srgtab.html.
|
[14] |
DELSARTE P, GOETHALS J M, SEIDEL J J. Bound for systems of lines and Jacobi polynomials[J]. Philips Res Rep, 1975, 30: 91-105.
|
[15] |
WILBRINK H A, BROUWER A E. A (57,14,1) strongly regular graph does not exist[J]. Indag Math,1983, 86(1):117-121.)
|
[1] |
BOSE R C. Strongly regular graphs, partial geometries, and partially balanced designs[J]. Pacific J Math, 1963, 13: 389-419.
|
[2] |
NEUMAIER A. Strongly regular graphs with least eigenvalue-m[J]. Arch Math, 1979, 33: 392-400.
|
[3] |
GRAHAM R L, LOVSZ L. Distance matrix polynomials of trees[J]. Adv Math, 1978, 29: 60-88.
|
[4] |
AZARIJA J. A short note on a short remark of Graham and Lovász[J]. Discrete Math, 2014, 315: 65-68.
|
[5] |
BROUWER A E, COHEN A M, NEUMAIER A. Distance-Regular Graphs[M]. Berlin: Springer-Verlag, 1989.
|
[6] |
BUSSEMAKER F C, HAEMERS W H, MATHON R, et al. A (49, 16, 3, 6) strongly regular graph does not exist[J]. European Journal of Combinatorics, 1989, 10: 413-418.
|
[7] |
DEGRAER J. Isomorph-free exhaustive generation algorithms for association schemes[D]. Ghent, Belgium: Ghent University, 2007.
|
[8] |
GODSIL C, Royle G. Algebraic Graph Theory[M]. New York: Springer-Verlag, 2001.
|
[9] |
BONDARENKO A V, PRYMAK A, RADCHENKO D. Non-existence of (76,30,8,14) strongly regular graph and some structural tools[DB/OL]. arXiv:1410.6748.
|
[10] |
HAEMERS W. There exists no (76, 21, 2, 7) strongly regular graph[C]// Finite Geometry and Combinatorics. Cambridge: Cambridge University Press, 1993: 175-176.
|
[11] |
HAEMERS W H. Matrix techniques for strongly regular graphs and related geometries[EB/OL]. [2015-10-10]http://cage.ugent.be/fdc/intensivecourse2/haemers2.pdf.
|
[12] |
SCOT L L JR. A condition on Higman’s parameters[J]. Notices Amer Math Soc, 1973, 701: 20-45.
|
[13] |
BROUWER A E. Parameters of strongly regular graphs[EB/OL]. [2015-10-10]https://www.win.tue.nl/ aeb/graphs/srg/srgtab.html.
|
[14] |
DELSARTE P, GOETHALS J M, SEIDEL J J. Bound for systems of lines and Jacobi polynomials[J]. Philips Res Rep, 1975, 30: 91-105.
|
[15] |
WILBRINK H A, BROUWER A E. A (57,14,1) strongly regular graph does not exist[J]. Indag Math,1983, 86(1):117-121.)
|