[1] |
Roger H A, Vijay K P, Calderbank A R, et al. The -linearity of Kerdock, Preparata, Goethals, and related codes[J]. IEEE Transactions on Information Theory, 1994, 40 (2): 301-319.
|
[2] |
Dougherty S T, Shiromoto K. Maximum distance codes over rings of order 4[J]. IEEE Transactions on Information Theory, 2001, 47(1): 400-404.
|
[3] |
Qian J F, Zhang L N, Zhu S X. (1+u)-constacyclic and cyclic codes over F2+uF2 [J]. Applied Mathematics Letters, 2006, 19(8): 820-823.
|
[4] |
Qian J F, Zhang L N. Constacyclic and cyclic codes over F2+uF2+u2F2 [J]. IEICE Transactions on Fundamentals, Communications and Computer Science, 2006, E89-A(6): 1 863-1 865.
|
[5] |
Zhu S X, Shi M J. The ranks of cyclic and negacyclic codes over the finite ring R[J]. Journal of Electronics (China), 2008, 25(1): 97-101.
|
[6] |
Abular T, Siap I. Constacyclic codes over F2+uF2 [J]. Journal of Franklin Institute, 2009, 346(5):520-529.
|
[7] |
Shi M J, Zhu S X. Constacyclic codes over ring Fq+uFq+…+uk-1Fq[J]. Journal of University of Science and Technology of China, 2009, 39(6): 583-587.施敏加, 朱士信. 环Fq+uFq+…+uk-1Fq上的常循环码[J]. 中国科学技术大学学报, 2009, 39(6): 583-587.
|
[8] |
Qian J F. Cyclic codes over finite rings[C]// Proceedings of 7th International Conference on Wireless Communications, Networking and Mobile Computing. Wuhan, China: IEEE Press, 2011:1-4.
|
[9] |
Kai X S, Zhu S X, Li P. (1+λu)-constacyclic codes over[J]. Journal of Franklin Institute, 2010, 347(5): 751-762.
|
[10] |
Ding J, Li H J, Li H X. On the equivalence of constacyclic codes over the ring Fpm+uFpm [J]. Joural of University of Science and Technology of China, 2013, 43(2): 334-339.丁健, 李红菊, 李海霞. 关于环Fpm+uFpm上常循环码的等价性[J]. 中国科学技术大学学报, 2013, 43(2): 334-339.
|
[11] |
Wang L Q, Zhu S X. A class of constacyclic codes over and its Gray image[J]. Journal of electronics and information technology, 2013, 35(2): 499-503.王立启, 朱士信. 环上的一类常循环码及其Gray象[J]. 电子与信息学报, 2013, 35(2): 499-503.
|
[12] |
Hu Q, Li P. Cyclic codes of arbitrary lengths over the ring Fq+uFq+u2Fq [J]. Journal of Hefei university of technology, 2013, 36(2): 243-247.胡庆,李平. 环Fq+uFq+u2Fq上任意长度的循环码[J]. 合肥工业大学学报(自然科学版), 2013, 36(2): 243-247.
|
[13] |
Liu J Q, Liu L, Kai X S. (1+uk)-cyclic codes over the ring F2+uF2+…ukF2 [J]. Journal of Hefei university of technology, 2013, 36(1): 124-128.刘金秋, 刘丽, 开晓山. 环F2+uF2+…ukF2上的(1+uk)常循环码[J]. 合肥工业大学学报(自然科学版), 2013, 36(1): 124-128.
|
[14] |
Zhang X Y. The Gray images of the liner codes and their dual codes over F2m+uF2m+u2F2m+u3F2m [J]. Journal of Mathematics, 2013, 33(4): 661-664.张晓燕. 环F2m+uF2m+u2F2m+u3F2m上的线性码及其对偶码的Gray象[J]. 数学杂志,2013, 33(4): 661-664.
|
[15] |
Li S S, Li P. Cyclic codes over the ring Z4+uZ4 [J]. Journal of Hefei university of technology, 2013, 36(8): 1 006-1 009.李珊珊,李平. 环Z4+uZ4上的循环码[J]. 合肥工业大学学报, 2013, 36(8): 1 006-1 009.
|
[16] |
Liang H, Tang Y S. The gray images of cyclic codes over Zp[u](uk+1)[J]. Mathematics in Practice and Theory, 2013, 43(5): 200-203.梁华, 唐元生. 环Zp[u](uk+1)上循环码的Gray象[J]. 数学的实践与认识, 2013, 43(5): 200-203.
|
[1] |
Roger H A, Vijay K P, Calderbank A R, et al. The -linearity of Kerdock, Preparata, Goethals, and related codes[J]. IEEE Transactions on Information Theory, 1994, 40 (2): 301-319.
|
[2] |
Dougherty S T, Shiromoto K. Maximum distance codes over rings of order 4[J]. IEEE Transactions on Information Theory, 2001, 47(1): 400-404.
|
[3] |
Qian J F, Zhang L N, Zhu S X. (1+u)-constacyclic and cyclic codes over F2+uF2 [J]. Applied Mathematics Letters, 2006, 19(8): 820-823.
|
[4] |
Qian J F, Zhang L N. Constacyclic and cyclic codes over F2+uF2+u2F2 [J]. IEICE Transactions on Fundamentals, Communications and Computer Science, 2006, E89-A(6): 1 863-1 865.
|
[5] |
Zhu S X, Shi M J. The ranks of cyclic and negacyclic codes over the finite ring R[J]. Journal of Electronics (China), 2008, 25(1): 97-101.
|
[6] |
Abular T, Siap I. Constacyclic codes over F2+uF2 [J]. Journal of Franklin Institute, 2009, 346(5):520-529.
|
[7] |
Shi M J, Zhu S X. Constacyclic codes over ring Fq+uFq+…+uk-1Fq[J]. Journal of University of Science and Technology of China, 2009, 39(6): 583-587.施敏加, 朱士信. 环Fq+uFq+…+uk-1Fq上的常循环码[J]. 中国科学技术大学学报, 2009, 39(6): 583-587.
|
[8] |
Qian J F. Cyclic codes over finite rings[C]// Proceedings of 7th International Conference on Wireless Communications, Networking and Mobile Computing. Wuhan, China: IEEE Press, 2011:1-4.
|
[9] |
Kai X S, Zhu S X, Li P. (1+λu)-constacyclic codes over[J]. Journal of Franklin Institute, 2010, 347(5): 751-762.
|
[10] |
Ding J, Li H J, Li H X. On the equivalence of constacyclic codes over the ring Fpm+uFpm [J]. Joural of University of Science and Technology of China, 2013, 43(2): 334-339.丁健, 李红菊, 李海霞. 关于环Fpm+uFpm上常循环码的等价性[J]. 中国科学技术大学学报, 2013, 43(2): 334-339.
|
[11] |
Wang L Q, Zhu S X. A class of constacyclic codes over and its Gray image[J]. Journal of electronics and information technology, 2013, 35(2): 499-503.王立启, 朱士信. 环上的一类常循环码及其Gray象[J]. 电子与信息学报, 2013, 35(2): 499-503.
|
[12] |
Hu Q, Li P. Cyclic codes of arbitrary lengths over the ring Fq+uFq+u2Fq [J]. Journal of Hefei university of technology, 2013, 36(2): 243-247.胡庆,李平. 环Fq+uFq+u2Fq上任意长度的循环码[J]. 合肥工业大学学报(自然科学版), 2013, 36(2): 243-247.
|
[13] |
Liu J Q, Liu L, Kai X S. (1+uk)-cyclic codes over the ring F2+uF2+…ukF2 [J]. Journal of Hefei university of technology, 2013, 36(1): 124-128.刘金秋, 刘丽, 开晓山. 环F2+uF2+…ukF2上的(1+uk)常循环码[J]. 合肥工业大学学报(自然科学版), 2013, 36(1): 124-128.
|
[14] |
Zhang X Y. The Gray images of the liner codes and their dual codes over F2m+uF2m+u2F2m+u3F2m [J]. Journal of Mathematics, 2013, 33(4): 661-664.张晓燕. 环F2m+uF2m+u2F2m+u3F2m上的线性码及其对偶码的Gray象[J]. 数学杂志,2013, 33(4): 661-664.
|
[15] |
Li S S, Li P. Cyclic codes over the ring Z4+uZ4 [J]. Journal of Hefei university of technology, 2013, 36(8): 1 006-1 009.李珊珊,李平. 环Z4+uZ4上的循环码[J]. 合肥工业大学学报, 2013, 36(8): 1 006-1 009.
|
[16] |
Liang H, Tang Y S. The gray images of cyclic codes over Zp[u](uk+1)[J]. Mathematics in Practice and Theory, 2013, 43(5): 200-203.梁华, 唐元生. 环Zp[u](uk+1)上循环码的Gray象[J]. 数学的实践与认识, 2013, 43(5): 200-203.
|