[1] |
Bruin H, Shen W, van Strien S. Invariant measure exists without a growth condition. Communications in Mathematical Physics, 2003, 241: 287–306. doi: 10.1007/s00220-003-0928-z
|
[2] |
Graczyk J, Swiatiek G. The Real Fatou Conjecture. Princeton, USA: Princeton University Press, 1998.
|
[3] |
Jakobson M, Swiatiek G. Metric properties of non-renormalizable S-unimodal maps. Part I. Induced expansion and invariant measures. Ergodic Theory and Dynamical Systems, 1994, 14: 721–755. doi: 10.1017/S0143385700008130
|
[4] |
Ji H, Li S. On the combinatorics of Fibonacci-like non-renormalizable maps. Commun. Math. Stat., 2020, 8: 473–496. doi: 10.1007/s40304-020-00210-x
|
[5] |
Ji H, Ma W. Decay of geometry for a class of cubic polynomials. arXiv: 2304.10689, 2023.
|
[6] |
Keller G, Nowicki T. Fibonacci maps re(al)-visited. Ergodic Theory and Dynamical Systems, 1995, 15: 99–120. doi: 10.1017/S0143385700008269
|
[7] |
Kozlovski O, Shen W, van Strien S. Rigidity for real polynomials. Annals of Mathematics, 2007, 165 (3): 749–841. doi: 10.4007/annals.2007.165.749
|
[8] |
Lyubich M, Milnor J. The Fibonacci unimodal map. J. Amer. Math. Soc., 1993, 6 (2): 425–457. doi: 10.1090/S0894-0347-1993-1182670-0
|
[9] |
Lyubich M. Combinatorics, geometry and attractors of quasi-quadratic maps. Annals of Mathematics, 1994, 140: 345–404. doi: 10.2307/2118604
|
[10] |
Mañé R. Hyperbolicity, sinks and measure in one-dimensional dynamics. Communications in Mathematical Physics, 1985, 100: 495–524. doi: 10.1007/BF01217727
|
[11] |
de Melo W, van Strien S. One-Dimensional Dynamics. Berlin: Springer-Verlag, 1993.
|
[12] |
Shen W. Decay of geometry for unimodal maps: An elementary proof. Annals of Mathematics, 2006, 163: 383–404. doi: 10.4007/annals.2006.163.383
|
[13] |
Straube E. On the existence of invariant absolutely continuous measures. Communications in Mathematical Physics, 1981, 81: 27–30. doi: 10.1007/BF01941798
|
[14] |
Swiatek G, Vargas E. Decay of geometry in the cubic family. Ergodic Theory and Dynamical Systems, 1998, 18: 1311–1329. doi: 10.1017/S0143385798117558
|
[15] |
Vargas E. Fibonacci bimodal maps. Discrete and Continuous Dynamical Systems, 2008, 22 (3): 807–815. doi: 10.3934/dcds.2008.22.807
|
[1] |
Bruin H, Shen W, van Strien S. Invariant measure exists without a growth condition. Communications in Mathematical Physics, 2003, 241: 287–306. doi: 10.1007/s00220-003-0928-z
|
[2] |
Graczyk J, Swiatiek G. The Real Fatou Conjecture. Princeton, USA: Princeton University Press, 1998.
|
[3] |
Jakobson M, Swiatiek G. Metric properties of non-renormalizable S-unimodal maps. Part I. Induced expansion and invariant measures. Ergodic Theory and Dynamical Systems, 1994, 14: 721–755. doi: 10.1017/S0143385700008130
|
[4] |
Ji H, Li S. On the combinatorics of Fibonacci-like non-renormalizable maps. Commun. Math. Stat., 2020, 8: 473–496. doi: 10.1007/s40304-020-00210-x
|
[5] |
Ji H, Ma W. Decay of geometry for a class of cubic polynomials. arXiv: 2304.10689, 2023.
|
[6] |
Keller G, Nowicki T. Fibonacci maps re(al)-visited. Ergodic Theory and Dynamical Systems, 1995, 15: 99–120. doi: 10.1017/S0143385700008269
|
[7] |
Kozlovski O, Shen W, van Strien S. Rigidity for real polynomials. Annals of Mathematics, 2007, 165 (3): 749–841. doi: 10.4007/annals.2007.165.749
|
[8] |
Lyubich M, Milnor J. The Fibonacci unimodal map. J. Amer. Math. Soc., 1993, 6 (2): 425–457. doi: 10.1090/S0894-0347-1993-1182670-0
|
[9] |
Lyubich M. Combinatorics, geometry and attractors of quasi-quadratic maps. Annals of Mathematics, 1994, 140: 345–404. doi: 10.2307/2118604
|
[10] |
Mañé R. Hyperbolicity, sinks and measure in one-dimensional dynamics. Communications in Mathematical Physics, 1985, 100: 495–524. doi: 10.1007/BF01217727
|
[11] |
de Melo W, van Strien S. One-Dimensional Dynamics. Berlin: Springer-Verlag, 1993.
|
[12] |
Shen W. Decay of geometry for unimodal maps: An elementary proof. Annals of Mathematics, 2006, 163: 383–404. doi: 10.4007/annals.2006.163.383
|
[13] |
Straube E. On the existence of invariant absolutely continuous measures. Communications in Mathematical Physics, 1981, 81: 27–30. doi: 10.1007/BF01941798
|
[14] |
Swiatek G, Vargas E. Decay of geometry in the cubic family. Ergodic Theory and Dynamical Systems, 1998, 18: 1311–1329. doi: 10.1017/S0143385798117558
|
[15] |
Vargas E. Fibonacci bimodal maps. Discrete and Continuous Dynamical Systems, 2008, 22 (3): 807–815. doi: 10.3934/dcds.2008.22.807
|