[1] |
Roughley S D, Jordan A M. The medicinal chemist’s toolbox: An analysis of reactions used in the pursuit of drug candidates. J. Med. Chem., 2011, 54 (10): 3451–3479. doi: 10.1021/jm200187y
|
[2] |
Panfilov A V, Markovich Y D, Ivashev I P, et al. Sodium borohydride in reductive amination reactions. Pharm. Chem. J., 2000, 34 (2): 76–78. doi: 10.1007/BF02524364
|
[3] |
Salvatore R N, Yoon C H, Jung K W. Synthesis of secondary amines. Tetrahedron, 2001, 57 (37): 7785–7811. doi: 10.1016/S0040-4020(01)00722-0
|
[4] |
Guillena G, Ramón D J, Yus M. Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chem. Rev., 2010, 110 (3): 1611–1641. doi: 10.1021/cr9002159
|
[5] |
Mao R, Frey A, Balon J, et al. Decarboxylative C(sp3)–N cross-coupling via synergetic photoredox and copper catalysis. Nat. Catal., 2018, 1 (2): 120–126. doi: 10.1038/s41929-017-0023-z
|
[6] |
Surry D S, Buchwald S L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed., 2008, 47 (34): 6338–6361. doi: 10.1002/anie.200800497
|
[7] |
Hartwig J F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res., 2008, 41 (11): 1534–1544. doi: 10.1021/ar800098p
|
[8] |
Surry D S, Buchwald S L. Dialkylbiaryl phosphines in Pd-catalyzed amination: A user’s guide. Chem. Sci., 2011, 2 (1): 27–50. doi: 10.1039/C0SC00331J
|
[9] |
Ley S V, Thomas A W. Modern synthetic methods for copper-mediated C(aryl) –O, C(aryl) –N, and C(aryl) –S bond formation. Angew. Chem. Int. Ed., 2003, 42 (44): 5400–5449. doi: 10.1002/anie.200300594
|
[10] |
Surry D S, Buchwald S L. Diamine ligands in copper-catalyzed reactions. Chem. Sci., 2010, 1 (1): 13–31. doi: 10.1039/c0sc00107d
|
[11] |
Zhou W, Fan M, Yin J et al. CuI/oxalic diamide catalyzed coupling reaction of (hetero)aryl chlorides and amines. J. Am. Chem. Soc., 2015, 137 (37): 11942–11945. doi: 10.1021/jacs.5b08411
|
[12] |
Fan M, Zhou W, Jiang Y, et al. Assembly of primary (hetero)arylamines via CuI/oxalic diamide-catalyzed coupling of aryl chlorides and ammonia. Org. Lett., 2015, 17 (23): 5934–5937. doi: 10.1021/acs.orglett.5b03230
|
[13] |
Yang C T, Fu Y, Huang Y B et al. Room-temperature copper-catalyzed carbon–nitrogen coupling of aryl iodides and bromides promoted by organic ionic bases. Angew. Chem. Int. Ed., 2009, 48 (40): 7398–7401. doi: 10.1002/anie.200903158
|
[14] |
Yu H Z, Jiang Y Y, Fu Y et al. Alternative mechanistic explanation for ligand-dependent selectivities in copper-catalyzed N- and O-arylation reactions. J. Am. Chem. Soc., 2010, 132 (51): 18078–18091. doi: 10.1021/ja104264v
|
[15] |
Cheung C W, Hu X. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides. Nat. Commun., 2016, 7: 12494. doi: 10.1038/ncomms12494
|
[16] |
Cheung C W, Ploeger M, Hu X. Direct amidation of esters with nitroarenes. Nat. Commun., 2017, 8: 14878. doi: 10.1038/ncomms14878
|
[17] |
Yadav M R, Nagaoka M, Kashihara M et al. The Suzuki–Miyaura coupling of nitroarenes. J. Am. Chem. Soc., 2017, 139 (28): 9423–9426. doi: 10.1021/jacs.7b03159
|
[18] |
Rauser M, Ascheberg C, Niggemann M. Electrophilic amination with nitroarenes. Angew. Chem. Int. Ed., 2017, 56 (38): 11570–11574. doi: 10.1002/anie.201705356
|
[19] |
Xuan M, Lu C, Lin B L. C-S coupling with nitro group as leaving group via simple inorganic salt catalysis. Chin. Chem. Lett., 2020, 31 (1): 84–90. doi: 10.1016/j.cclet.2019.07.012
|
[20] |
Wang B, Ma J, Ren H, et al. Chemo-, site-selective reduction of nitroarenes under blue-light, catalyst-free conditions. Chin. Chem. Lett., 2022, 33 (5): 2420–2424. doi: 10.1016/j.cclet.2021.11.023
|
[21] |
Shevick S L, Wilson C V, Kotesova S, et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci., 2020, 11 (46): 12401–12422. doi: 10.1039/D0SC04112B
|
[22] |
Liu R Y, Buchwald S L. CuH-catalyzed olefin functionalization: From hydroamination to carbonyl addition. Acc. Chem. Res., 2020, 53 (6): 1229–1243. doi: 10.1021/acs.accounts.0c00164
|
[23] |
Zhang Z, Bera S, Fan C, et al. Streamlined alkylation via nickel-hydride-catalyzed hydrocarbonation of alkenes. J. Am. Chem. Soc., 2022, 144 (16): 7015–7029. doi: 10.1021/jacs.1c13482
|
[24] |
He Y, Chen J, Jiang X, et al. Enantioselective NiH-catalyzed reductive hydrofunctionalization of alkenes. Chin. J. Chem., 2022, 40 (5): 651–661. doi: 10.1002/cjoc.202100763
|
[25] |
Sun C, Yin G. Integrating aryl chlorides into nickel-catalyzed 1, 1-difunctionalization of alkenes. Chin. Chem. Lett., 2022, 33 (12): 5096–5100. doi: 10.1016/j.cclet.2022.04.026
|
[26] |
Ni S X, Li Y L, Ni H Q, et al. Nickel-catalyzed hydromonofluoromethylation of unactivated alkenes for expedient construction of primary alkyl fluorides. Chin. Chem. Lett., 2022 (In press). https://doi.org/10.1016/j.cclet.2022.06.037.
|
[27] |
Ren X, Liu Q, Wang Z, et al. Visible-light-induced direct hydrodifluoromethylation of alkenes with difluoromethyltriphenylphosphonium iodide salt. Chin. Chem. Lett., 2023, 34 (1): 107473. doi: 10.1016/j.cclet.2022.04.071
|
[28] |
Yu Y, Jiang Y, Wu S, et al. Electrochemistry enabled selective vicinal fluorosulfenylation and fluorosulfoxidation of alkenes. Chin. Chem. Lett., 2022, 33 (4): 2009–2014. doi: 10.1016/j.cclet.2021.10.016
|
[29] |
Huang L, Arndt M, Gooßen K, et al. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev., 2015, 115 (7): 2596–2697. doi: 10.1021/cr300389u
|
[30] |
Pirnot M T, Wang Y M, Buchwald S L. Copper hydride catalyzed hydroamination of alkenes and alkynes. Angew. Chem. Int. Ed., 2016, 55 (1): 48–57. doi: 10.1002/anie.201507594
|
[31] |
Kawatsura M, Hartwig J F. Palladium-catalyzed intermolecular hydroamination of vinylarenes using arylamines. J. Am. Chem. Soc., 2000, 122 (39): 9546–9547. doi: 10.1021/ja002284t
|
[32] |
Waser J, Gaspar B, Nambu H, et al. Hydrazines and azides via the metal-catalyzed hydrohydrazination and hydroazidation of olefins. J. Am. Chem. Soc., 2006, 128 (35): 11693–11712. doi: 10.1021/ja062355+
|
[33] |
Yang Y, Shi S L, Niu D, et al. Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science, 2015, 349: 62–66. doi: 10.1126/science.aab3753
|
[34] |
Xi Y, Ma S, Hartwig J F. Catalytic asymmetric addition of an amine N–H bond across internal alkenes. Nature, 2020, 588 (7837): 254–260. doi: 10.1038/s41586-020-2919-z
|
[35] |
Musacchio A J, Lainhart B C, Zhang X, et al. Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science, 2017, 355 (6326): 727–730. doi: 10.1126/science.aal3010
|
[36] |
Gui J, Pan C M, Jin Y, et al. Practical olefin hydroamination with nitroarenes. Science, 2015, 348 (6237): 886–891. doi: 10.1126/science.aab0245
|
[37] |
Xiao J, He Y, Ye F, et al. Remote sp3 C–H amination of alkenes with nitroarenes. Chem, 2018, 4 (7): 1645–1657. doi: 10.1016/j.chempr.2018.04.008
|
[38] |
Meng L, Yang J, Duan M, et al. Facile synthesis of chiral arylamines, alkylamines and amides by enantioselective NiH-catalyzed hydroamination. Angew. Chem. Int. Ed., 2021, 60 (44): 23584–23589. doi: 10.1002/anie.202109881
|
[39] |
Zhang Y, Qiao D, Duan M, et al. Enantioselective synthesis of α-aminoboronates by NiH-catalysed asymmetric hydroamidation of alkenyl boronates. Nat. Commun., 2022, 13: 5630. doi: 10.1038/s41467-022-33411-9
|
[40] |
Wang X X, Lu X, Li Y, et al. Recent advances in nickel-catalyzed reductive hydroalkylation and hydroarylation of electronically unbiased alkenes. Sci China Chem, 2020, 63 (11): 1586–1600. doi: 10.1007/s11426-020-9838-x
|
[41] |
Lu X, Xiao B, Shang R, et al. Synthesis of unnatural amino acids through palladium-catalyzed C(sp3)–H functionalization. Chin. Chem. Lett., 2016, 27 (3): 305–311. doi: 10.1016/j.cclet.2015.12.021
|
[42] |
Lu X, He S J, Cheng W M, et al. Transition-metal-catalyzed C–H functionalization for late-stage modification of peptides and proteins. Chin. Chem. Lett., 2018, 29 (7): 1001–1008. doi: 10.1016/j.cclet.2018.05.011
|
[43] |
Chang Z, Wang J, Lu X, et al. Synthesis of gem-difluoroalkenes through nickel-promoted electrochemical reductive cross-coupling. Chin. J. Org. Chem., 2022, 42 (1): 147–159. doi: 10.6023/cjoc202108006
|
[44] |
He S J, Pi J J, Li Y et al. Nickel-catalyzed Suzuki-type cross coupling of fluorinated alkenyl boronates with alkyl halides. Acta Chim. Sinica, 2018, 76 (12): 956–961. doi: 10.6023/A18080333
|
[45] |
Lu X, Xiao B, Zhang Z, et al. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation. Nat. Commun., 2016, 7: 11129. doi: 10.1038/ncomms11129
|
[46] |
He S J, Wang J W, Li Y, et al. Nickel-catalyzed enantioconvergent reductive hydroalkylation of olefins with α-heteroatom phosphorus or sulfur alkyl electrophiles. J. Am. Chem. Soc., 2020, 142 (1): 214–221. doi: 10.1021/jacs.9b09415
|
[47] |
Wang X X, Yu L, Lu X, et al. NiH-catalyzed reductive hydrocarbonation of enol esters and ethers. CCS Chem., 2022, 4 (2): 605–615. doi: 10.31635/ccschem.021.202000760
|
[48] |
Wang J W, Li Y, Nie W, et al. Catalytic asymmetric reductive hydroalkylation of enamides and enecarbamates to chiral aliphatic amines. Nat. Commun., 2021, 12: 1313. doi: 10.1038/s41467-021-21600-x
|
[49] |
Wang J W, Liu D G, Chang Z, et al. Nickel-catalyzed switchable site-selective alkene hydroalkylation by temperature regulation. Angew. Chem. Int. Ed., 2022, 61 (31): e202205537. doi: 10.1002/anie.202205537
|
[50] |
Wang X X, Xu Y T, Zhang Z L, et al. NiH-catalysed proximal-selective hydroalkylation of unactivated alkenes and the ligand effects on regioselectivity. Nat. Commun., 2022, 13: 1890. doi: 10.1038/s41467-022-29554-4
|
[51] |
Li Y, Liu D G, Wan L, et al. Ligand-controlled cobalt-catalyzed regiodivergent alkyne hydroalkylation. J. Am. Chem. Soc., 2022, 144 (30): 13961–13972. doi: 10.1021/jacs.2c06279
|
[52] |
Wei D, Yang P, Yu C, et al. N-alkylation of amines with alcohols catalyzed by manganese(II) chloride or bromopentacarbonylmanganese(I). J. Org. Chem., 2021, 86 (3): 2254–2263. doi: 10.1021/acs.joc.0c02407
|
[53] |
Zou Q, Liu F, Zhao T, et al. Reductive amination of ketones/aldehydes with amines using BH3N(C2H5)3 as a reductant. Chem. Commun., 2021, 57 (69): 8588–8591. doi: 10.1039/D1CC02618F
|
[54] |
Hao X W, Yuan J, Yu G A, et al. Air-stable and highly efficient indenyl-derived phosphine ligand: Application to Buchwald–Hartwig amination reactions. J. Organomet. Chem., 2012, 706–707: 99–105. doi: 10.1016/j.jorganchem.2012.02.007
|
Supplemental Information JUSTC-2022-0119.R1.pdf |
Figure 2. Scope of substrates. Standard conditions: nitroarene (0.20 mmol, 1.0 equiv.), alkene (0.40 mmol, 2.0 equiv.), NiBr2(diglyme) (0.02 mmol, 10 mol%), L8 (0.03 mmol, 15 mol%), DEMS (2.0 mmol, 10.0 equiv.), Na2CO3 (0.60 mmol, 3.0 equiv.), TBAI (0.10 mmol, 0.5 equiv.), Mg powder (0.10 mmol, 0.5 equiv.), solvent (1,4-dioxane∶MeOH = 5∶1, 1.20 mL, 0.167 mol/L), 50 °C, 12 h. The yield represents the isolated yield of the major product. The reaction regioselectivity was determined by GC analysis of the reaction mixture. aFor these cases, the reaction regioselectivity could not be determined by GC analysis, 1H NMR determined regioisomeric ratios shown in the table after chromatography purification. bL1 instead of L8 as ligand. DEMS = Diethoxymethylsilane; TBAI = Tetrabutylammonium iodide.
Figure 3. Synthetic applications. Standard conditions are shown in Fig. 2. aThe yield represents the total GC yield. The reaction regioselectivity was determined by GC analysis of the reaction mixture. bThe yield represents the isolated yield of the major product. The reaction regioselectivity was determined by GC analysis of the reaction mixture. cYields reported in reference. dThe yield represents the isolated yield of the major product. Regioselectivity could not be determined by GC analysis. The regioisomeric ratio was determined to be >20∶1.0 l∶b by 1H NMR after chromatography purification. DCMI-PHOS = dicyclohexyl(2-mesityl-1H-inden-1-yl)phosphine; DME = 1,2-dimethoxyethane; dba = dibenzylideneacetone.
Figure 4. Mechanistic investigation. Standard conditions: nitroarene or potential intermediate (0.20 mmol, 1.0 equiv. or 0.10 mmol, 0.5 equiv.), alkene (0.40 mmol, 2.0 equiv.), NiBr2(diglyme) (0.02 mmol, 10 mol%), L8 (0.03 mmol, 15 mol%), DEMS (2.0 mmol, 10.0 equiv.), Na2CO3 (0.60 mmol, 3.0 equiv.), TBAI (0.10 mmol, 0.5 equiv.), Mg powder (0.10 mmol, 0.5 equiv.), solvent (1,4-dioxane∶ MeOH = 5∶1, 1.20 mL, 0.167 mol/L), 50 °C, 12 h. Yields and regioisomeric ratios were determined by GC analysis with triphenylmethane as an internal standard. Total yield for the mixture of the linear product and branched product.
[1] |
Roughley S D, Jordan A M. The medicinal chemist’s toolbox: An analysis of reactions used in the pursuit of drug candidates. J. Med. Chem., 2011, 54 (10): 3451–3479. doi: 10.1021/jm200187y
|
[2] |
Panfilov A V, Markovich Y D, Ivashev I P, et al. Sodium borohydride in reductive amination reactions. Pharm. Chem. J., 2000, 34 (2): 76–78. doi: 10.1007/BF02524364
|
[3] |
Salvatore R N, Yoon C H, Jung K W. Synthesis of secondary amines. Tetrahedron, 2001, 57 (37): 7785–7811. doi: 10.1016/S0040-4020(01)00722-0
|
[4] |
Guillena G, Ramón D J, Yus M. Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chem. Rev., 2010, 110 (3): 1611–1641. doi: 10.1021/cr9002159
|
[5] |
Mao R, Frey A, Balon J, et al. Decarboxylative C(sp3)–N cross-coupling via synergetic photoredox and copper catalysis. Nat. Catal., 2018, 1 (2): 120–126. doi: 10.1038/s41929-017-0023-z
|
[6] |
Surry D S, Buchwald S L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed., 2008, 47 (34): 6338–6361. doi: 10.1002/anie.200800497
|
[7] |
Hartwig J F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res., 2008, 41 (11): 1534–1544. doi: 10.1021/ar800098p
|
[8] |
Surry D S, Buchwald S L. Dialkylbiaryl phosphines in Pd-catalyzed amination: A user’s guide. Chem. Sci., 2011, 2 (1): 27–50. doi: 10.1039/C0SC00331J
|
[9] |
Ley S V, Thomas A W. Modern synthetic methods for copper-mediated C(aryl) –O, C(aryl) –N, and C(aryl) –S bond formation. Angew. Chem. Int. Ed., 2003, 42 (44): 5400–5449. doi: 10.1002/anie.200300594
|
[10] |
Surry D S, Buchwald S L. Diamine ligands in copper-catalyzed reactions. Chem. Sci., 2010, 1 (1): 13–31. doi: 10.1039/c0sc00107d
|
[11] |
Zhou W, Fan M, Yin J et al. CuI/oxalic diamide catalyzed coupling reaction of (hetero)aryl chlorides and amines. J. Am. Chem. Soc., 2015, 137 (37): 11942–11945. doi: 10.1021/jacs.5b08411
|
[12] |
Fan M, Zhou W, Jiang Y, et al. Assembly of primary (hetero)arylamines via CuI/oxalic diamide-catalyzed coupling of aryl chlorides and ammonia. Org. Lett., 2015, 17 (23): 5934–5937. doi: 10.1021/acs.orglett.5b03230
|
[13] |
Yang C T, Fu Y, Huang Y B et al. Room-temperature copper-catalyzed carbon–nitrogen coupling of aryl iodides and bromides promoted by organic ionic bases. Angew. Chem. Int. Ed., 2009, 48 (40): 7398–7401. doi: 10.1002/anie.200903158
|
[14] |
Yu H Z, Jiang Y Y, Fu Y et al. Alternative mechanistic explanation for ligand-dependent selectivities in copper-catalyzed N- and O-arylation reactions. J. Am. Chem. Soc., 2010, 132 (51): 18078–18091. doi: 10.1021/ja104264v
|
[15] |
Cheung C W, Hu X. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides. Nat. Commun., 2016, 7: 12494. doi: 10.1038/ncomms12494
|
[16] |
Cheung C W, Ploeger M, Hu X. Direct amidation of esters with nitroarenes. Nat. Commun., 2017, 8: 14878. doi: 10.1038/ncomms14878
|
[17] |
Yadav M R, Nagaoka M, Kashihara M et al. The Suzuki–Miyaura coupling of nitroarenes. J. Am. Chem. Soc., 2017, 139 (28): 9423–9426. doi: 10.1021/jacs.7b03159
|
[18] |
Rauser M, Ascheberg C, Niggemann M. Electrophilic amination with nitroarenes. Angew. Chem. Int. Ed., 2017, 56 (38): 11570–11574. doi: 10.1002/anie.201705356
|
[19] |
Xuan M, Lu C, Lin B L. C-S coupling with nitro group as leaving group via simple inorganic salt catalysis. Chin. Chem. Lett., 2020, 31 (1): 84–90. doi: 10.1016/j.cclet.2019.07.012
|
[20] |
Wang B, Ma J, Ren H, et al. Chemo-, site-selective reduction of nitroarenes under blue-light, catalyst-free conditions. Chin. Chem. Lett., 2022, 33 (5): 2420–2424. doi: 10.1016/j.cclet.2021.11.023
|
[21] |
Shevick S L, Wilson C V, Kotesova S, et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci., 2020, 11 (46): 12401–12422. doi: 10.1039/D0SC04112B
|
[22] |
Liu R Y, Buchwald S L. CuH-catalyzed olefin functionalization: From hydroamination to carbonyl addition. Acc. Chem. Res., 2020, 53 (6): 1229–1243. doi: 10.1021/acs.accounts.0c00164
|
[23] |
Zhang Z, Bera S, Fan C, et al. Streamlined alkylation via nickel-hydride-catalyzed hydrocarbonation of alkenes. J. Am. Chem. Soc., 2022, 144 (16): 7015–7029. doi: 10.1021/jacs.1c13482
|
[24] |
He Y, Chen J, Jiang X, et al. Enantioselective NiH-catalyzed reductive hydrofunctionalization of alkenes. Chin. J. Chem., 2022, 40 (5): 651–661. doi: 10.1002/cjoc.202100763
|
[25] |
Sun C, Yin G. Integrating aryl chlorides into nickel-catalyzed 1, 1-difunctionalization of alkenes. Chin. Chem. Lett., 2022, 33 (12): 5096–5100. doi: 10.1016/j.cclet.2022.04.026
|
[26] |
Ni S X, Li Y L, Ni H Q, et al. Nickel-catalyzed hydromonofluoromethylation of unactivated alkenes for expedient construction of primary alkyl fluorides. Chin. Chem. Lett., 2022 (In press). https://doi.org/10.1016/j.cclet.2022.06.037.
|
[27] |
Ren X, Liu Q, Wang Z, et al. Visible-light-induced direct hydrodifluoromethylation of alkenes with difluoromethyltriphenylphosphonium iodide salt. Chin. Chem. Lett., 2023, 34 (1): 107473. doi: 10.1016/j.cclet.2022.04.071
|
[28] |
Yu Y, Jiang Y, Wu S, et al. Electrochemistry enabled selective vicinal fluorosulfenylation and fluorosulfoxidation of alkenes. Chin. Chem. Lett., 2022, 33 (4): 2009–2014. doi: 10.1016/j.cclet.2021.10.016
|
[29] |
Huang L, Arndt M, Gooßen K, et al. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev., 2015, 115 (7): 2596–2697. doi: 10.1021/cr300389u
|
[30] |
Pirnot M T, Wang Y M, Buchwald S L. Copper hydride catalyzed hydroamination of alkenes and alkynes. Angew. Chem. Int. Ed., 2016, 55 (1): 48–57. doi: 10.1002/anie.201507594
|
[31] |
Kawatsura M, Hartwig J F. Palladium-catalyzed intermolecular hydroamination of vinylarenes using arylamines. J. Am. Chem. Soc., 2000, 122 (39): 9546–9547. doi: 10.1021/ja002284t
|
[32] |
Waser J, Gaspar B, Nambu H, et al. Hydrazines and azides via the metal-catalyzed hydrohydrazination and hydroazidation of olefins. J. Am. Chem. Soc., 2006, 128 (35): 11693–11712. doi: 10.1021/ja062355+
|
[33] |
Yang Y, Shi S L, Niu D, et al. Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science, 2015, 349: 62–66. doi: 10.1126/science.aab3753
|
[34] |
Xi Y, Ma S, Hartwig J F. Catalytic asymmetric addition of an amine N–H bond across internal alkenes. Nature, 2020, 588 (7837): 254–260. doi: 10.1038/s41586-020-2919-z
|
[35] |
Musacchio A J, Lainhart B C, Zhang X, et al. Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science, 2017, 355 (6326): 727–730. doi: 10.1126/science.aal3010
|
[36] |
Gui J, Pan C M, Jin Y, et al. Practical olefin hydroamination with nitroarenes. Science, 2015, 348 (6237): 886–891. doi: 10.1126/science.aab0245
|
[37] |
Xiao J, He Y, Ye F, et al. Remote sp3 C–H amination of alkenes with nitroarenes. Chem, 2018, 4 (7): 1645–1657. doi: 10.1016/j.chempr.2018.04.008
|
[38] |
Meng L, Yang J, Duan M, et al. Facile synthesis of chiral arylamines, alkylamines and amides by enantioselective NiH-catalyzed hydroamination. Angew. Chem. Int. Ed., 2021, 60 (44): 23584–23589. doi: 10.1002/anie.202109881
|
[39] |
Zhang Y, Qiao D, Duan M, et al. Enantioselective synthesis of α-aminoboronates by NiH-catalysed asymmetric hydroamidation of alkenyl boronates. Nat. Commun., 2022, 13: 5630. doi: 10.1038/s41467-022-33411-9
|
[40] |
Wang X X, Lu X, Li Y, et al. Recent advances in nickel-catalyzed reductive hydroalkylation and hydroarylation of electronically unbiased alkenes. Sci China Chem, 2020, 63 (11): 1586–1600. doi: 10.1007/s11426-020-9838-x
|
[41] |
Lu X, Xiao B, Shang R, et al. Synthesis of unnatural amino acids through palladium-catalyzed C(sp3)–H functionalization. Chin. Chem. Lett., 2016, 27 (3): 305–311. doi: 10.1016/j.cclet.2015.12.021
|
[42] |
Lu X, He S J, Cheng W M, et al. Transition-metal-catalyzed C–H functionalization for late-stage modification of peptides and proteins. Chin. Chem. Lett., 2018, 29 (7): 1001–1008. doi: 10.1016/j.cclet.2018.05.011
|
[43] |
Chang Z, Wang J, Lu X, et al. Synthesis of gem-difluoroalkenes through nickel-promoted electrochemical reductive cross-coupling. Chin. J. Org. Chem., 2022, 42 (1): 147–159. doi: 10.6023/cjoc202108006
|
[44] |
He S J, Pi J J, Li Y et al. Nickel-catalyzed Suzuki-type cross coupling of fluorinated alkenyl boronates with alkyl halides. Acta Chim. Sinica, 2018, 76 (12): 956–961. doi: 10.6023/A18080333
|
[45] |
Lu X, Xiao B, Zhang Z, et al. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation. Nat. Commun., 2016, 7: 11129. doi: 10.1038/ncomms11129
|
[46] |
He S J, Wang J W, Li Y, et al. Nickel-catalyzed enantioconvergent reductive hydroalkylation of olefins with α-heteroatom phosphorus or sulfur alkyl electrophiles. J. Am. Chem. Soc., 2020, 142 (1): 214–221. doi: 10.1021/jacs.9b09415
|
[47] |
Wang X X, Yu L, Lu X, et al. NiH-catalyzed reductive hydrocarbonation of enol esters and ethers. CCS Chem., 2022, 4 (2): 605–615. doi: 10.31635/ccschem.021.202000760
|
[48] |
Wang J W, Li Y, Nie W, et al. Catalytic asymmetric reductive hydroalkylation of enamides and enecarbamates to chiral aliphatic amines. Nat. Commun., 2021, 12: 1313. doi: 10.1038/s41467-021-21600-x
|
[49] |
Wang J W, Liu D G, Chang Z, et al. Nickel-catalyzed switchable site-selective alkene hydroalkylation by temperature regulation. Angew. Chem. Int. Ed., 2022, 61 (31): e202205537. doi: 10.1002/anie.202205537
|
[50] |
Wang X X, Xu Y T, Zhang Z L, et al. NiH-catalysed proximal-selective hydroalkylation of unactivated alkenes and the ligand effects on regioselectivity. Nat. Commun., 2022, 13: 1890. doi: 10.1038/s41467-022-29554-4
|
[51] |
Li Y, Liu D G, Wan L, et al. Ligand-controlled cobalt-catalyzed regiodivergent alkyne hydroalkylation. J. Am. Chem. Soc., 2022, 144 (30): 13961–13972. doi: 10.1021/jacs.2c06279
|
[52] |
Wei D, Yang P, Yu C, et al. N-alkylation of amines with alcohols catalyzed by manganese(II) chloride or bromopentacarbonylmanganese(I). J. Org. Chem., 2021, 86 (3): 2254–2263. doi: 10.1021/acs.joc.0c02407
|
[53] |
Zou Q, Liu F, Zhao T, et al. Reductive amination of ketones/aldehydes with amines using BH3N(C2H5)3 as a reductant. Chem. Commun., 2021, 57 (69): 8588–8591. doi: 10.1039/D1CC02618F
|
[54] |
Hao X W, Yuan J, Yu G A, et al. Air-stable and highly efficient indenyl-derived phosphine ligand: Application to Buchwald–Hartwig amination reactions. J. Organomet. Chem., 2012, 706–707: 99–105. doi: 10.1016/j.jorganchem.2012.02.007
|