[1] |
Sheng L, Wang Q, Liu X, et al. Suppressing electrolyte-lithium metal reactivity via Li(+)-desolvation in uniform nano-porous separator. Nat. Commun., 2022, 13 (1): 172. doi: 10.1038/s41467-021-27841-0
|
[2] |
Winter M, Barnett B, Xu K. Before Li ion batteries. Chem. Rev., 2018, 118 (23): 11433–11456. doi: 10.1021/acs.chemrev.8b00422
|
[3] |
Wang M, Emre A E, Kim J Y, et al. Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters. Nat. Commun., 2022, 13 (1): 278. doi: 10.1038/s41467-021-27861-w
|
[4] |
Yao Y X, Zhang X Q, Li B Q, et al. A compact inorganic layer for robust anode protection in lithium‐sulfur batteries. InfoMat, 2020, 2 (2): 379–388. doi: 10.1002/inf2.12046
|
[5] |
Li J, Kong Z, Liu X, et al. Strategies to anode protection in lithium metal battery: A review. InfoMat, 2021, 3 (12): 1333–1363. doi: 10.1002/inf2.12189
|
[6] |
Han Z, Zhang C, Lin Q, et al. A protective layer for lithium metal anode: Why and how. Small Methods, 2021, 5 (4): 2001035. doi: 10.1002/smtd.202001035
|
[7] |
Ye Y, Zhao Y, Zhao T, et al. An Antipulverization and high-continuity lithium metal anode for high-energy lithium batteries. Adv. Mater., 2021, 33 (49): 2105029. doi: 10.1002/adma.202105029
|
[8] |
Gao Y, Rojas T, Wang K, et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy, 2020, 5 (7): 534–542. doi: 10.1038/s41560-020-0640-7
|
[9] |
Wang Q, Yang C, Yang J, et al. Dendrite-free lithium deposition via a superfilling mechanism for high-performance Li-metal batteries. Adv. Mater., 2019, 31 (41): 1903248. doi: 10.1002/adma.201903248
|
[10] |
Zheng J, Yan P, Mei D, et al. Highly stable operation of lithium metal batteries enabled by the formation of a transient high-concentration electrolyte layer. Adv. Energy Mater., 2016, 6 (8): 1502151. doi: 10.1002/aenm.201502151
|
[11] |
Huang M, Yao Z, Yang Q, et al. Consecutive nucleation and confinement modulation towards Li plating in seeded capsules for durable Li-metal batteries. Angew. Chem. Int. Ed., 2021, 60 (25): 14040–14050. doi: 10.1002/anie.202102552
|
[12] |
Xu Y, Zhou Y, Li T, et al. Multifunctional covalent organic frameworks for high capacity and dendrite-free lithium metal batteries. Energy Stor. Mater., 2020, 25: 334–341. doi: 10.1016/j.ensm.2019.10.005
|
[13] |
Chang Z, Qiao Y, Yang H, et al. Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem. Int. Ed., 2021, 60 (28): 15572–15581. doi: 10.1002/anie.202104124
|
[14] |
Lange S, Schmidt P, Nilges T. Au3SnP7@ black phosphorus: An easy access to black phosphorus. Inorg. Chem., 2007, 46 (10): 4028–4035. doi: 10.1021/ic062192q
|
[15] |
Sun J, Sun Y, Pasta M, et al. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Adv. Mater., 2016, 28 (44): 9797–9803. doi: 10.1002/adma.201602172
|
[16] |
Jin H, Xin S, Chuang C, et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science, 2020, 370: 192–197. doi: 10.1126/science.aav5842
|
[17] |
Zhao C Z, Chen P Y, Zhang R, et al. An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv., 2018, 4 (11): eaat3446. doi: 10.1126/sciadv.aat3446
|
[18] |
Chang Z, Qiao Y, Deng H, et al. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule, 2020, 4 (8): 1776–1789. doi: 10.1016/j.joule.2020.06.011
|
[19] |
He X, Jin S, Miao L, et al. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem. Int. Ed., 2020, 59 (38): 16705–16711. doi: 10.1002/anie.202006783
|
[20] |
Xie H, Hao Q, Jin H, et al. Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: A mechanism based on a Galton Board. Sci. China Chem., 2020, 63 (9): 1306–1314. doi: 10.1007/s11426-020-9796-9
|
[21] |
He Y, Chang Z, Wu S, et al. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater., 2018, 8 (34): 1802130. doi: 10.1002/aenm.201802130
|
[22] |
Tang X, Zhou D, Li P, et al. MXene-based dendrite-free potassium metal batteries. Adv. Mater., 2020, 32 (4): 1906739. doi: 10.1002/adma.201906739
|
Figure 2. Li-ion transportation behaviors. (a) Tafel curves of the Li||Li symmetric cells with or without the BP-G layer to evaluate the exchange current densities. (b) Short circuit tests of Li||Cu half cells with bare Li or (BP-G)/Li metal anodes at 1.0 mA∙cm−2. Nyquist plots of Li||Li symmetric cells before and after polarization with the (c) bare Li and (d) (BP-G)/Li metal anodes; the corresponding direct current polarization curves of the (e) bare Li and (f) (BP-G)/Li metal anodes.
Figure 3. Electrochemical performances of Li||Cu half cells and Li||Li symmetric cells. (a) The variation of CE values in Li||Cu cells with the bare Li or (BP-G)/Li metal anodes at the current density of 1.0 mA∙cm−2 and areal capacity of 1.0 mA∙h∙cm−2. The corresponding charge/discharge curves at the (b) 50th and (c) 100th cycles. (d) Voltage profiles of Li||Li symmetric cells with the bare Li (orange line) and (BP-G)/Li (blue line) metal anodes at a current density of 1.0 mA∙cm−2 and an areal capacity of 1.0 mA∙h∙cm−2. The insets show the corresponding enlarged voltage profiles at different cycling stages. Impedance spectra of Li||Li symmetric cells with the bare Li or (BP-G)/Li metal anodes at (e) the initial state and the end of the (f) 100th and (g) 1000th cycles.
Figure 4. Electrochemical performances of LFP||Li full cells. (a) Variation in specific capacity retention with cycle numbers at 1.0 C. (b) Charge/discharge voltage profiles of the 10th and 300th cycles. Morphologies of lithium metal anodes after 300 cycles with the (c) bare Li or (d) (BP-G)/Li metal anodes.
[1] |
Sheng L, Wang Q, Liu X, et al. Suppressing electrolyte-lithium metal reactivity via Li(+)-desolvation in uniform nano-porous separator. Nat. Commun., 2022, 13 (1): 172. doi: 10.1038/s41467-021-27841-0
|
[2] |
Winter M, Barnett B, Xu K. Before Li ion batteries. Chem. Rev., 2018, 118 (23): 11433–11456. doi: 10.1021/acs.chemrev.8b00422
|
[3] |
Wang M, Emre A E, Kim J Y, et al. Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters. Nat. Commun., 2022, 13 (1): 278. doi: 10.1038/s41467-021-27861-w
|
[4] |
Yao Y X, Zhang X Q, Li B Q, et al. A compact inorganic layer for robust anode protection in lithium‐sulfur batteries. InfoMat, 2020, 2 (2): 379–388. doi: 10.1002/inf2.12046
|
[5] |
Li J, Kong Z, Liu X, et al. Strategies to anode protection in lithium metal battery: A review. InfoMat, 2021, 3 (12): 1333–1363. doi: 10.1002/inf2.12189
|
[6] |
Han Z, Zhang C, Lin Q, et al. A protective layer for lithium metal anode: Why and how. Small Methods, 2021, 5 (4): 2001035. doi: 10.1002/smtd.202001035
|
[7] |
Ye Y, Zhao Y, Zhao T, et al. An Antipulverization and high-continuity lithium metal anode for high-energy lithium batteries. Adv. Mater., 2021, 33 (49): 2105029. doi: 10.1002/adma.202105029
|
[8] |
Gao Y, Rojas T, Wang K, et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy, 2020, 5 (7): 534–542. doi: 10.1038/s41560-020-0640-7
|
[9] |
Wang Q, Yang C, Yang J, et al. Dendrite-free lithium deposition via a superfilling mechanism for high-performance Li-metal batteries. Adv. Mater., 2019, 31 (41): 1903248. doi: 10.1002/adma.201903248
|
[10] |
Zheng J, Yan P, Mei D, et al. Highly stable operation of lithium metal batteries enabled by the formation of a transient high-concentration electrolyte layer. Adv. Energy Mater., 2016, 6 (8): 1502151. doi: 10.1002/aenm.201502151
|
[11] |
Huang M, Yao Z, Yang Q, et al. Consecutive nucleation and confinement modulation towards Li plating in seeded capsules for durable Li-metal batteries. Angew. Chem. Int. Ed., 2021, 60 (25): 14040–14050. doi: 10.1002/anie.202102552
|
[12] |
Xu Y, Zhou Y, Li T, et al. Multifunctional covalent organic frameworks for high capacity and dendrite-free lithium metal batteries. Energy Stor. Mater., 2020, 25: 334–341. doi: 10.1016/j.ensm.2019.10.005
|
[13] |
Chang Z, Qiao Y, Yang H, et al. Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem. Int. Ed., 2021, 60 (28): 15572–15581. doi: 10.1002/anie.202104124
|
[14] |
Lange S, Schmidt P, Nilges T. Au3SnP7@ black phosphorus: An easy access to black phosphorus. Inorg. Chem., 2007, 46 (10): 4028–4035. doi: 10.1021/ic062192q
|
[15] |
Sun J, Sun Y, Pasta M, et al. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Adv. Mater., 2016, 28 (44): 9797–9803. doi: 10.1002/adma.201602172
|
[16] |
Jin H, Xin S, Chuang C, et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science, 2020, 370: 192–197. doi: 10.1126/science.aav5842
|
[17] |
Zhao C Z, Chen P Y, Zhang R, et al. An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv., 2018, 4 (11): eaat3446. doi: 10.1126/sciadv.aat3446
|
[18] |
Chang Z, Qiao Y, Deng H, et al. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule, 2020, 4 (8): 1776–1789. doi: 10.1016/j.joule.2020.06.011
|
[19] |
He X, Jin S, Miao L, et al. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem. Int. Ed., 2020, 59 (38): 16705–16711. doi: 10.1002/anie.202006783
|
[20] |
Xie H, Hao Q, Jin H, et al. Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: A mechanism based on a Galton Board. Sci. China Chem., 2020, 63 (9): 1306–1314. doi: 10.1007/s11426-020-9796-9
|
[21] |
He Y, Chang Z, Wu S, et al. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater., 2018, 8 (34): 1802130. doi: 10.1002/aenm.201802130
|
[22] |
Tang X, Zhou D, Li P, et al. MXene-based dendrite-free potassium metal batteries. Adv. Mater., 2020, 32 (4): 1906739. doi: 10.1002/adma.201906739
|