[1] |
Fulling S A. Nonuniqueness of canonical field quantization in Riemannian space-time. Physical Review D, 1973, 7 (10): 2850–2862. doi: 10.1103/PhysRevD.7.2850
|
[2] |
Unruh W G, Wald R M. Acceleration radiation and the generalized second law of thermodynamics. Physical Review D, 1982, 25 (4): 942–958. doi: 10.1103/PhysRevD.25.942
|
[3] |
Unruh W G, Wald R M. What happens when an accelerating observer detects a Rindler particle. Physical Review D, 1984, 29 (6): 1047–1056. doi: 10.1103/PhysRevD.29.1047
|
[4] |
Unruh W G. Thermal bath and decoherence of Rindler spacetimes. Physical Review D, 1992, 46 (8): 3271–3277. doi: 10.1103/physrevd.46.3271
|
[5] |
Unruh W G. Acceleration radiation for orbiting electrons. Physics Reports, 1998, 307: 163–171.
|
[6] |
Crispino L C, Higuchi A, Matsas G E. The Unruh effect and its applications. Reviews of Modern Physics, 2008, 80 (3): 787–838. doi: 10.1103/RevModPhys.80.787
|
[7] |
Bekenstein J D. Generalized second law of thermodynamics in black-hole physics. Physical Review D, 1974, 9 (12): 3292–3300. doi: 10.1103/PhysRevD.9.3292
|
[8] |
Unruh W G. Second quantization in the Kerr metric. Physical Review D, 1974, 10 (10): 3194–3205. doi: 10.1103/PhysRevD.10.3194
|
[9] |
Hawking S W. Particle creation by black holes. Communications in Mathematical Physics, 1975, 43 (3): 199–220. doi: 10.1007/BF02345020
|
[10] |
Unruh W G. Notes on black-hole evaporation. Physical Review D, 1976, 14 (4): 870–892. doi: 10.1103/PhysRevD.14.870
|
[11] |
Dabholkar A, Nampuri S. Quantum black holes. In: Baumgartl M, Brunner I, Haack M, editors. Strings and Fundamental Physics. Berlin: Springer, 2012: 165–232.
|
[12] |
Lambert P H. Introduction to black hole evaporation. Proceedings of Science, 2014: PoS(Modave 2013)001.
|
[13] |
Socolovsky M. Rindler space, Unruh effect and Hawking temperature. Annales de la Fondation Louis de Broglie, 2014, 39: 1–49.
|
[14] |
Alsing P M, Fuentes-Schuller I, Mann R B, et al. Entanglement of Dirac fields in noninertial frames. Physical Review A, 2006, 74 (3): 032326. doi: 10.1103/PhysRevA.74.032326
|
[15] |
Martín-Martínez E, León J. Quantum correlations through event horizons: Fermionic versus bosonic entanglement. Physical Review A, 2010, 81 (3): 032320. doi: 10.1103/PhysRevA.81.032320
|
[16] |
Martín-Martínez E, Fuentes I. Redistribution of particle and antiparticle entanglement in noninertial frames. Physical Review A, 2011, 83 (5): 052306. doi: 10.1103/PhysRevA.83.052306
|
[17] |
Wang J, Jing J. Multipartite entanglement of fermionic systems in noninertial frames. Physical Review A, 2011, 83 (2): 022314. doi: 10.1103/PhysRevA.83.022314
|
[18] |
Wipf A. Quantum fields near black holes. In: Hehl F W, Kiefer C, Metzler R J K, editors. Black Holes: Theory and Observation. Berlin: Springer, 2003: 385–415.
|
[19] |
Susskind L, Lindesay J. An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe. Singapore: World Scientific Publishing Co. Pte. Ltd., 2004.
|
[20] |
Fuentes-Schuller I, Mann R B. Alice falls into a black hole: Entanglement in noninertial frames. Physical Review Letters, 2005, 95 (12): 120404. doi: 10.1103/PhysRevLett.95.120404
|
[21] |
Jacobson T. Introduction to quantum fields in curved spacetime and the Hawking effect. In: Gomberoff A, Marolf D, editors. Lectures on Quantum Gravity. Boston, MA: Springer, 2005: 39–89.
|
[22] |
Semay C. Penrose-Carter diagram for a uniformly accelerated observer. European Journal of Physics, 2007, 28 (5): 877–887. doi: 10.1088/0143-0807/28/5/011
|
[23] |
Alsing P M, Fuentes I. Observer-dependent entanglement. Classical and Quantum Gravity, 2012, 29 (22): 224001. doi: 10.1088/0264-9381/29/22/224001
|
[24] |
Higuchi A, Iso S, Ueda K, et al. Entanglement of the vacuum between left, right, future, and past: The origin of entanglement-induced quantum radiation. Physical Review D, 2017, 96 (8): 083531. doi: 10.1103/PhysRevD.96.083531
|
[25] |
Bruschi D E, Louko J, Martín-Martínez E, et al. Unruh effect in quantum information beyond the single-mode approximation. Physical Review A, 2010, 82 (4): 042332. doi: 10.1103/PhysRevA.82.042332
|
[26] |
Adesso G, Fuentes-Schuller I, Ericsson M. Continuous-variable entanglement sharing in noninertial frames. Physical Review A, 2007, 76 (6): 062112. doi: 10.1103/PhysRevA.76.062112
|
[27] |
Alsing P M, Milburn G J. Teleportation with a uniformly accelerated partner. Physical Review Letters, 2003, 91 (18): 180404. doi: 10.1103/PhysRevLett.91.180404
|
[28] |
Dai Y, Shen Z, Shi Y. Killing quantum entanglement by acceleration or a black hole. Journal of High Energy Physics, 2015, 2015: 71. doi: 10.1007/JHEP09(2015)071
|
[29] |
Datta A. Quantum discord between relatively accelerated observers. Physical Review A, 2009, 80 (5): 052304. doi: 10.1103/PhysRevA.80.052304
|
[30] |
Santana A E, Malbouisson J M C, Malbouisson A P C, et al. Thermal field theory: Algebraic aspects and applications to confined systems. In: Khanna F, Matrasulov D, editors. Non-Linear Dynamics and Fundamental Interactions. Dordrecht, Netherlands: Springer, 2006: 187–213.
|
[31] |
Mukohyama S. Hartle-Hawking state is a maximum of entanglement entropy. Phys. Rev. D, 2000, 61: 064015. doi: 10.1103/PhysRevD.61.064015
|
[32] |
Jacobson T. Black holes and Hawking radiation in spacetime and its analogues. In: Faccio D, Francesco B, Cacciatori S, et al, editors. Analogue Gravity Phenomenology. Cham, Switzerland: Springer, 2013: 1–29.
|
[33] |
Martín-Martínez E, Garay L J, León J. Unveiling quantum entanglement degradation near a Schwarzschild black hole. Physical Review D, 2010, 82 (6): 064006. doi: 10.1103/PhysRevD.82.064006
|
[34] |
Venkataratnam K K. Analytical study of two-mode thermal squeezed states and black holes. International Journal of Theoretical Physics, 2017, 56 (2): 377–385. doi: 10.1007/s10773-016-3178-5
|
[35] |
Dhayal R, Rathore M, Venkataratnam K K. Single-mode squeezed thermal states and black holes. International Journal of Theoretical Physics, 2019, 58 (12): 4311–4322. doi: 10.1007/s10773-019-04303-4
|
[36] |
Hawking S W. Breakdown of predictability in gravitational collapse. Physical Review D, 1976, 14 (10): 2460–2473. doi: 10.1103/PhysRevD.14.2460
|
[37] |
Mathur S D. The information paradox: A pedagogical introduction. Classical and Quantum Gravity, 2009, 26 (22): 224001. doi: 10.1088/0264-9381/26/22/224001
|
[38] |
Unruh W G, Wald R M. Information loss. Reports on Progress in Physics, 2017, 80 (9): 092002. doi: 10.1088/1361-6633/aa778e
|
[39] |
Page D N. Average entropy of a subsystem. Physical Review Letters, 1993, 71 (9): 1291–1294. doi: 10.1103/PhysRevLett.71.1291
|
[40] |
Page D N. Information in black hole radiation. Physical Review Letters, 1993, 71 (23): 3743–3746. doi: 10.1103/PhysRevLett.71.3743
|
Figure 1. Rindler space. Spacetime is divided into four wedges, left “L”, right “R”, future “F”, and past “P”. The black full line represents the trajectory with constant acceleration. The blue long dashed line is an example of the Cauchy surface. Both the left and right wedges are required to cover the entire space.
Figure
2.
Coefficient function
Figure
3.
Coefficient function
Figure
6.
Entropy of the radiation after
Figure
7.
Entropy of the radiation after
[1] |
Fulling S A. Nonuniqueness of canonical field quantization in Riemannian space-time. Physical Review D, 1973, 7 (10): 2850–2862. doi: 10.1103/PhysRevD.7.2850
|
[2] |
Unruh W G, Wald R M. Acceleration radiation and the generalized second law of thermodynamics. Physical Review D, 1982, 25 (4): 942–958. doi: 10.1103/PhysRevD.25.942
|
[3] |
Unruh W G, Wald R M. What happens when an accelerating observer detects a Rindler particle. Physical Review D, 1984, 29 (6): 1047–1056. doi: 10.1103/PhysRevD.29.1047
|
[4] |
Unruh W G. Thermal bath and decoherence of Rindler spacetimes. Physical Review D, 1992, 46 (8): 3271–3277. doi: 10.1103/physrevd.46.3271
|
[5] |
Unruh W G. Acceleration radiation for orbiting electrons. Physics Reports, 1998, 307: 163–171.
|
[6] |
Crispino L C, Higuchi A, Matsas G E. The Unruh effect and its applications. Reviews of Modern Physics, 2008, 80 (3): 787–838. doi: 10.1103/RevModPhys.80.787
|
[7] |
Bekenstein J D. Generalized second law of thermodynamics in black-hole physics. Physical Review D, 1974, 9 (12): 3292–3300. doi: 10.1103/PhysRevD.9.3292
|
[8] |
Unruh W G. Second quantization in the Kerr metric. Physical Review D, 1974, 10 (10): 3194–3205. doi: 10.1103/PhysRevD.10.3194
|
[9] |
Hawking S W. Particle creation by black holes. Communications in Mathematical Physics, 1975, 43 (3): 199–220. doi: 10.1007/BF02345020
|
[10] |
Unruh W G. Notes on black-hole evaporation. Physical Review D, 1976, 14 (4): 870–892. doi: 10.1103/PhysRevD.14.870
|
[11] |
Dabholkar A, Nampuri S. Quantum black holes. In: Baumgartl M, Brunner I, Haack M, editors. Strings and Fundamental Physics. Berlin: Springer, 2012: 165–232.
|
[12] |
Lambert P H. Introduction to black hole evaporation. Proceedings of Science, 2014: PoS(Modave 2013)001.
|
[13] |
Socolovsky M. Rindler space, Unruh effect and Hawking temperature. Annales de la Fondation Louis de Broglie, 2014, 39: 1–49.
|
[14] |
Alsing P M, Fuentes-Schuller I, Mann R B, et al. Entanglement of Dirac fields in noninertial frames. Physical Review A, 2006, 74 (3): 032326. doi: 10.1103/PhysRevA.74.032326
|
[15] |
Martín-Martínez E, León J. Quantum correlations through event horizons: Fermionic versus bosonic entanglement. Physical Review A, 2010, 81 (3): 032320. doi: 10.1103/PhysRevA.81.032320
|
[16] |
Martín-Martínez E, Fuentes I. Redistribution of particle and antiparticle entanglement in noninertial frames. Physical Review A, 2011, 83 (5): 052306. doi: 10.1103/PhysRevA.83.052306
|
[17] |
Wang J, Jing J. Multipartite entanglement of fermionic systems in noninertial frames. Physical Review A, 2011, 83 (2): 022314. doi: 10.1103/PhysRevA.83.022314
|
[18] |
Wipf A. Quantum fields near black holes. In: Hehl F W, Kiefer C, Metzler R J K, editors. Black Holes: Theory and Observation. Berlin: Springer, 2003: 385–415.
|
[19] |
Susskind L, Lindesay J. An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe. Singapore: World Scientific Publishing Co. Pte. Ltd., 2004.
|
[20] |
Fuentes-Schuller I, Mann R B. Alice falls into a black hole: Entanglement in noninertial frames. Physical Review Letters, 2005, 95 (12): 120404. doi: 10.1103/PhysRevLett.95.120404
|
[21] |
Jacobson T. Introduction to quantum fields in curved spacetime and the Hawking effect. In: Gomberoff A, Marolf D, editors. Lectures on Quantum Gravity. Boston, MA: Springer, 2005: 39–89.
|
[22] |
Semay C. Penrose-Carter diagram for a uniformly accelerated observer. European Journal of Physics, 2007, 28 (5): 877–887. doi: 10.1088/0143-0807/28/5/011
|
[23] |
Alsing P M, Fuentes I. Observer-dependent entanglement. Classical and Quantum Gravity, 2012, 29 (22): 224001. doi: 10.1088/0264-9381/29/22/224001
|
[24] |
Higuchi A, Iso S, Ueda K, et al. Entanglement of the vacuum between left, right, future, and past: The origin of entanglement-induced quantum radiation. Physical Review D, 2017, 96 (8): 083531. doi: 10.1103/PhysRevD.96.083531
|
[25] |
Bruschi D E, Louko J, Martín-Martínez E, et al. Unruh effect in quantum information beyond the single-mode approximation. Physical Review A, 2010, 82 (4): 042332. doi: 10.1103/PhysRevA.82.042332
|
[26] |
Adesso G, Fuentes-Schuller I, Ericsson M. Continuous-variable entanglement sharing in noninertial frames. Physical Review A, 2007, 76 (6): 062112. doi: 10.1103/PhysRevA.76.062112
|
[27] |
Alsing P M, Milburn G J. Teleportation with a uniformly accelerated partner. Physical Review Letters, 2003, 91 (18): 180404. doi: 10.1103/PhysRevLett.91.180404
|
[28] |
Dai Y, Shen Z, Shi Y. Killing quantum entanglement by acceleration or a black hole. Journal of High Energy Physics, 2015, 2015: 71. doi: 10.1007/JHEP09(2015)071
|
[29] |
Datta A. Quantum discord between relatively accelerated observers. Physical Review A, 2009, 80 (5): 052304. doi: 10.1103/PhysRevA.80.052304
|
[30] |
Santana A E, Malbouisson J M C, Malbouisson A P C, et al. Thermal field theory: Algebraic aspects and applications to confined systems. In: Khanna F, Matrasulov D, editors. Non-Linear Dynamics and Fundamental Interactions. Dordrecht, Netherlands: Springer, 2006: 187–213.
|
[31] |
Mukohyama S. Hartle-Hawking state is a maximum of entanglement entropy. Phys. Rev. D, 2000, 61: 064015. doi: 10.1103/PhysRevD.61.064015
|
[32] |
Jacobson T. Black holes and Hawking radiation in spacetime and its analogues. In: Faccio D, Francesco B, Cacciatori S, et al, editors. Analogue Gravity Phenomenology. Cham, Switzerland: Springer, 2013: 1–29.
|
[33] |
Martín-Martínez E, Garay L J, León J. Unveiling quantum entanglement degradation near a Schwarzschild black hole. Physical Review D, 2010, 82 (6): 064006. doi: 10.1103/PhysRevD.82.064006
|
[34] |
Venkataratnam K K. Analytical study of two-mode thermal squeezed states and black holes. International Journal of Theoretical Physics, 2017, 56 (2): 377–385. doi: 10.1007/s10773-016-3178-5
|
[35] |
Dhayal R, Rathore M, Venkataratnam K K. Single-mode squeezed thermal states and black holes. International Journal of Theoretical Physics, 2019, 58 (12): 4311–4322. doi: 10.1007/s10773-019-04303-4
|
[36] |
Hawking S W. Breakdown of predictability in gravitational collapse. Physical Review D, 1976, 14 (10): 2460–2473. doi: 10.1103/PhysRevD.14.2460
|
[37] |
Mathur S D. The information paradox: A pedagogical introduction. Classical and Quantum Gravity, 2009, 26 (22): 224001. doi: 10.1088/0264-9381/26/22/224001
|
[38] |
Unruh W G, Wald R M. Information loss. Reports on Progress in Physics, 2017, 80 (9): 092002. doi: 10.1088/1361-6633/aa778e
|
[39] |
Page D N. Average entropy of a subsystem. Physical Review Letters, 1993, 71 (9): 1291–1294. doi: 10.1103/PhysRevLett.71.1291
|
[40] |
Page D N. Information in black hole radiation. Physical Review Letters, 1993, 71 (23): 3743–3746. doi: 10.1103/PhysRevLett.71.3743
|