[1] |
Ali M S, Anwar Z, Mujtaba M A, et al. Two-phase frictional pressure drop with pure refrigerants in vertical mini/micro-channels. Case Studies in Thermal Engineering, 2021, 23: 100824. doi: https://doi.org/10.1016/j.csite.2020.100824
|
[2] |
Zhang N C, Li B, Feng L H, et al. Research on the thermophysical properties and cycle performances of R1234yf/R290 and R1234yf/R600a. International Journal of Thermophysics, 2021, 42: 123. doi: 10.1007/s10765-021-02875-0
|
[3] |
Zhang N, Hu P, Chen L X, et al. Measurements of critical properties of the binary mixture of 1,1,1-trifluoroethane (HFC-143a)+ trans-1,3,3,3-Tetrafluoropropene (HFO-1234ze (E)). Journal of Chemical & Engineering Data, 2021, 66: 2717–2722. doi: https://doi.org/10.1021/acs.jced.1c00065
|
[4] |
Bagherzadeh S A, D'Orazio A, Karimipour A, et al. A novel sensitivity analysis model of EANN for F-MWCNTs-Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs. Physica A: Statistical Mechanics and its Applications, 2019, 521: 406–415. doi: 10.1016/j.physa.2019.01.048
|
[5] |
Giwa S O, Sharifpur M, Goodarzi M, et al. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: Experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. Journal of Thermal Analysis and Calorimetry, 2021, 143: 4149–4167. doi: 10.1007/s10973-020-09372-w
|
[6] |
Sánchez D, Cabello R, Llopis R, et al. Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives. International Journal of Refrigeration, 2017, 74: 269–282. doi: https://doi.org/10.1016/j.ijrefrig.2016.09.020
|
[7] |
Hwang S, Jeong J H. The effects of the parameters of a refrigeration system working with R600a on the non-equilibrium subcooled two-phase flow of the refrigerant. International Journal of Refrigeration, 2020, 118: 462–469. doi: 10.1016/j.ijrefrig.2020.06.026
|
[8] |
Bahmani M H, Sheikhzadeh G, Zarringhalam M, et al. Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Advanced Powder Technology, 2018, 29 (2): 273–282. doi: 10.1016/j.apt.2017.11.013
|
[9] |
Sarafraz M M, Tian Z, Tlili I, et al. Thermal evaluation of a heat pipe working with n-pentane-acetone and n-pentane-methanol binary mixtures. Journal of Thermal Analysis and Calorimetry, 2020, 139: 2435–2445. doi: 10.1007/s10973-019-08414-2
|
[10] |
Heimel M, Lang W, Berger E, et al. A homogeneous capillary tube model - comprehensive parameter studies using isobutane as refrigerant. In: International Refrigeration and Air Conditioning Conference. West Lafayette: Purdue University, 2012: Paper 1233.
|
[11] |
de Lara J F, Melo C, Boeng J, et al. Experimental analysis of HFC-134a expansion through small-bore adiabatic capillary tubes. International Journal of Refrigeration, 2020, 112: 37–43. doi: 10.1016/j.ijrefrig.2019.12.015
|
[12] |
Ardhapurkar P M, Sridharan A, Atrey M D. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler. AIP Conference Proceedings, 2014, 1573: 155. doi: https://doi.org/10.1063/1.4860696
|
[13] |
Kruthiventi S S H, Venkatarathnam G. Studies on capillary tube expansion device used in J-T refrigerators operating with nitrogen-hydrocarbon mixtures. Cryogenics, 2017, 87: 76–84. doi: 10.1016/j.cryogenics.2017.09.002
|
[14] |
Parmar D, Atrey M D. Experimental and numerical investigation on the flow of mixed refrigerants through capillary tubes at cryogenic temperatures. Applied Thermal Engineering, 2020, 175: 115339. doi: 10.1016/j.applthermaleng.2020.115339
|
[15] |
Rocha T T M, de Paula C H, Cangussu V M, et al. Effect of surface roughness on the mass flow rate predictions for adiabatic capillary tubes. International Journal of Refrigeration, 2020, 118: 269–278. doi: 10.1016/j.ijrefrig.2020.05.020
|
[16] |
Khan M K, Kumar R, Sahoo P K. Flow characteristics of refrigerants flowing through capillary tubes-A review. Applied Thermal Engineering, 2009, 29: 1426–1439. doi: 10.1016/j.applthermaleng.2008.08.020
|
[17] |
García-Valladares O. Numerical simulation and experimental validation of coiled adiabatic capillary tubes. Applied Thermal Engineering, 2007, 27: 1062–1071. doi: 10.1016/j.applthermaleng.2006.07.034
|
[18] |
Schenk M, Oellrich L R. Experimental investigation of the refrigerant flow of isobutane (R600a) through adiabatic capillary tubes. International Journal of Refrigeration, 2014, 38: 275–280. doi: 10.1016/j.ijrefrig.2013.08.024
|
[19] |
Chingulpitak S, Wongwises S. Two-phase flow model of refrigerants flowing through helically coiled capillary tubes. Applied Thermal Engineering, 2010, 30: 1927–1936. doi: 10.1016/j.applthermaleng.2010.04.026
|
[20] |
Vinš V, Hrubý J, Vacek V. Numerical simulation of gas-contaminated refrigerant two-phase flow through adiabatic capillary tubes. International Journal of Heat and Mass Transfer, 2010, 53: 5430–5439. doi: 10.1016/j.ijheatmasstransfer.2010.07.013
|
[21] |
Rasti M, Jeong J H. A generalized continuous empirical correlation for the refrigerant mass flow rate through adiabatic straight and helically coiled capillary tubes. Applied Thermal Engineering, 2018, 143: 450–460. doi: 10.1016/j.applthermaleng.2018.07.124
|
[22] |
Hermes C J L, Melo C, Knabben F T. Algebraic solution of capillary tube flows Part I: Adiabatic capillary tubes. Applied Thermal Engineering, 2010, 30: 449–457. doi: 10.1016/j.applthermaleng.2009.10.005
|
[23] |
Dubba S K, Kumar R. Flow of refrigerants through capillary tubes: A state-of-the-art. Experimental Thermal and Fluid Science, 2017, 81: 370–381. doi: 10.1016/j.expthermflusci.2016.09.012
|
[24] |
Jadhav P, Agrawal N. A comparative study in the straight and a spiral adiabatic capillary tube. International Journal of Ambient Energy, 2019, 40: 693–698. doi: 10.1080/01430750.2017.1422146
|
[25] |
Alok P, Sahu D. Numerical simulation of capillary tube for selected refrigerants using homogeneous equilibrium model. International Journal of Air-Conditioning and Refrigeration, 2019, 27: 1950001. doi: 10.1142/S2010132519500019
|
[26] |
Jadhav P, Agrawal N. A comparative study of flow characteristics of adiabatic spiral and helical capillary tube in a CO2 transcritical system. International Journal of Ambient Energy, 2021: 1–8. doi: 10.1080/01430750.2021.1913645
|
[27] |
Zareh M, Heidari M G, Javidmand P. Numerical simulation and experimental comparison of the R12, R22 and R134a flow inside straight and coiled helical capillary tubes. Journal of Mechanical Science and Technology, 2016, 30: 1421–1430. doi: 10.1007/s12206-016-0250-2
|
[28] |
Wang J, Cao F, Wang Z Z, et al. Numerical simulation of coiled adiabatic capillary tubes in CO2 transcritical systems with separated flow model including metastable flow. International Journal of Refrigeration, 2012, 35 (8): 2188–2198. doi: 10.1016/j.ijrefrig.2012.07.012
|
[29] |
Agrawal N, Bhattacharyya S. Homogeneous versus separated two phase flow models: Adiabatic capillary tube flow in a transcritical CO2 heat pump. International Journal of Thermal Sciences, 2008, 47 (11): 1555–1562. doi: 10.1016/j.ijthermalsci.2007.12.008
|
[30] |
Furlong T W, Schmidt D P. A comparison of homogenous and separated flow assumptions for adiabatic capillary flow. Applied Thermal Engineering, 2012, 48: 186–193. doi: 10.1016/j.applthermaleng.2012.05.007
|
[31] |
Lorbek L, Kuhelj A, Dular M, et al. Two-phase flow patterns in adiabatic refrigerant flow through capillary tubes. International Journal of Refrigeration, 2020, 115: 107–116. doi: 10.1016/j.ijrefrig.2020.02.030
|
[32] |
Melo C, Ferreira R T S, Neto C B, et al. An experimental analysis of adiabatic capillary tubes. Applied Thermal Engineering, 1999, 19: 669–684. doi: 10.1016/S1359-4311(98)00062-3
|
[33] |
Collier J G, Thome J R. Convective Boiling and Condensation. 3rd ed. New York: Clarendon Press, 1994.
|
[34] |
Chen Z H, Li R Y, Lin S, et al. A correlation for metastable flow of R-12 through capillary tubes. ASHRAE Transactions, 1990, 96: 550–554.
|
[35] |
Feburie V, Giot M, Granger S, et al. A model for choked flow through cracks with inlet subcooling. International Journal of Multiphase Flow, 1993, 19: 541–562. doi: 10.1016/0301-9322(93)90087-B
|
[36] |
Premoli A, Francesco D, Prina A. An empirical correlation for evaluating two-phase mixture density under adiabatic conditions. In: European Two-Phase Flow Group Meeting, Milan, Italy, 1970.
|
[37] |
Chisholm D. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. International Journal of Heat and Mass Transfer, 1973, 16: 347–358. doi: 10.1016/0017-9310(73)90063-X
|
[38] |
Deodhar S D, Kothadia H B, Iyer K N, et al. Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes. Applied Thermal Engineering, 2015, 90: 879–894. doi: 10.1016/j.applthermaleng.2015.07.073
|
[39] |
Chung M. A numerical procedure for simulation of Fanno flows of refrigerants or refrigerant mixtures in capillary tubes. 1998 ASHRAE Summer Annual Meeting, 1998 [2021-04-10]. https://www.osti.gov/biblio/687663-numerical-procedure-simulation-fanno-flows-refrigerants-refrigerant-mixtures-capillary-tubes.
|
[40] |
Zhang Y F, Zhou G B, Xie H, et al. An assessment of friction factor and viscosity correlations for model prediction of refrigerant flow in capillary tubes. International Journal of Energy Research, 2005, 29 (3): 233–248. doi: 10.1002/er.1050
|
[41] |
Ahmadi M H, Mohseni-Gharyehsafa B, Ghazvini M, et al. Comparing various machine learning approaches in modeling the dynamic viscosity of CuO/water nanofluid. Journal of Thermal Analysis and Calorimetry, 2020, 139: 2585–2599. doi: 10.1007/s10973-019-08762-z
|
[42] |
Zhou G B, Zhang Y F. Numerical and experimental investigations on the performance of coiled adiabatic capillary tubes. Applied Thermal Engineering, 2006, 26: 1106–1114. doi: 10.1016/j.applthermaleng.2005.11.003
|
[43] |
Bansal P K, Wang G. Numerical analysis of choked refrigerant flow in adiabatic capillary tubes. Applied Thermal Engineering, 2004, 24: 851–863. doi: 10.1016/j.applthermaleng.2003.10.010
|
[44] |
Lemmon E, Huber M, McLinden M. NIST Standard Reference Database 23: NIST thermodynamic and transport properties of refrigerants and refrigerant mixtures-REFPROP, version 9.1. Gaithersburg, MD: National Institute of Standards and Technology, 2013.
|
[1] |
Ali M S, Anwar Z, Mujtaba M A, et al. Two-phase frictional pressure drop with pure refrigerants in vertical mini/micro-channels. Case Studies in Thermal Engineering, 2021, 23: 100824. doi: https://doi.org/10.1016/j.csite.2020.100824
|
[2] |
Zhang N C, Li B, Feng L H, et al. Research on the thermophysical properties and cycle performances of R1234yf/R290 and R1234yf/R600a. International Journal of Thermophysics, 2021, 42: 123. doi: 10.1007/s10765-021-02875-0
|
[3] |
Zhang N, Hu P, Chen L X, et al. Measurements of critical properties of the binary mixture of 1,1,1-trifluoroethane (HFC-143a)+ trans-1,3,3,3-Tetrafluoropropene (HFO-1234ze (E)). Journal of Chemical & Engineering Data, 2021, 66: 2717–2722. doi: https://doi.org/10.1021/acs.jced.1c00065
|
[4] |
Bagherzadeh S A, D'Orazio A, Karimipour A, et al. A novel sensitivity analysis model of EANN for F-MWCNTs-Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs. Physica A: Statistical Mechanics and its Applications, 2019, 521: 406–415. doi: 10.1016/j.physa.2019.01.048
|
[5] |
Giwa S O, Sharifpur M, Goodarzi M, et al. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: Experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. Journal of Thermal Analysis and Calorimetry, 2021, 143: 4149–4167. doi: 10.1007/s10973-020-09372-w
|
[6] |
Sánchez D, Cabello R, Llopis R, et al. Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives. International Journal of Refrigeration, 2017, 74: 269–282. doi: https://doi.org/10.1016/j.ijrefrig.2016.09.020
|
[7] |
Hwang S, Jeong J H. The effects of the parameters of a refrigeration system working with R600a on the non-equilibrium subcooled two-phase flow of the refrigerant. International Journal of Refrigeration, 2020, 118: 462–469. doi: 10.1016/j.ijrefrig.2020.06.026
|
[8] |
Bahmani M H, Sheikhzadeh G, Zarringhalam M, et al. Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Advanced Powder Technology, 2018, 29 (2): 273–282. doi: 10.1016/j.apt.2017.11.013
|
[9] |
Sarafraz M M, Tian Z, Tlili I, et al. Thermal evaluation of a heat pipe working with n-pentane-acetone and n-pentane-methanol binary mixtures. Journal of Thermal Analysis and Calorimetry, 2020, 139: 2435–2445. doi: 10.1007/s10973-019-08414-2
|
[10] |
Heimel M, Lang W, Berger E, et al. A homogeneous capillary tube model - comprehensive parameter studies using isobutane as refrigerant. In: International Refrigeration and Air Conditioning Conference. West Lafayette: Purdue University, 2012: Paper 1233.
|
[11] |
de Lara J F, Melo C, Boeng J, et al. Experimental analysis of HFC-134a expansion through small-bore adiabatic capillary tubes. International Journal of Refrigeration, 2020, 112: 37–43. doi: 10.1016/j.ijrefrig.2019.12.015
|
[12] |
Ardhapurkar P M, Sridharan A, Atrey M D. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler. AIP Conference Proceedings, 2014, 1573: 155. doi: https://doi.org/10.1063/1.4860696
|
[13] |
Kruthiventi S S H, Venkatarathnam G. Studies on capillary tube expansion device used in J-T refrigerators operating with nitrogen-hydrocarbon mixtures. Cryogenics, 2017, 87: 76–84. doi: 10.1016/j.cryogenics.2017.09.002
|
[14] |
Parmar D, Atrey M D. Experimental and numerical investigation on the flow of mixed refrigerants through capillary tubes at cryogenic temperatures. Applied Thermal Engineering, 2020, 175: 115339. doi: 10.1016/j.applthermaleng.2020.115339
|
[15] |
Rocha T T M, de Paula C H, Cangussu V M, et al. Effect of surface roughness on the mass flow rate predictions for adiabatic capillary tubes. International Journal of Refrigeration, 2020, 118: 269–278. doi: 10.1016/j.ijrefrig.2020.05.020
|
[16] |
Khan M K, Kumar R, Sahoo P K. Flow characteristics of refrigerants flowing through capillary tubes-A review. Applied Thermal Engineering, 2009, 29: 1426–1439. doi: 10.1016/j.applthermaleng.2008.08.020
|
[17] |
García-Valladares O. Numerical simulation and experimental validation of coiled adiabatic capillary tubes. Applied Thermal Engineering, 2007, 27: 1062–1071. doi: 10.1016/j.applthermaleng.2006.07.034
|
[18] |
Schenk M, Oellrich L R. Experimental investigation of the refrigerant flow of isobutane (R600a) through adiabatic capillary tubes. International Journal of Refrigeration, 2014, 38: 275–280. doi: 10.1016/j.ijrefrig.2013.08.024
|
[19] |
Chingulpitak S, Wongwises S. Two-phase flow model of refrigerants flowing through helically coiled capillary tubes. Applied Thermal Engineering, 2010, 30: 1927–1936. doi: 10.1016/j.applthermaleng.2010.04.026
|
[20] |
Vinš V, Hrubý J, Vacek V. Numerical simulation of gas-contaminated refrigerant two-phase flow through adiabatic capillary tubes. International Journal of Heat and Mass Transfer, 2010, 53: 5430–5439. doi: 10.1016/j.ijheatmasstransfer.2010.07.013
|
[21] |
Rasti M, Jeong J H. A generalized continuous empirical correlation for the refrigerant mass flow rate through adiabatic straight and helically coiled capillary tubes. Applied Thermal Engineering, 2018, 143: 450–460. doi: 10.1016/j.applthermaleng.2018.07.124
|
[22] |
Hermes C J L, Melo C, Knabben F T. Algebraic solution of capillary tube flows Part I: Adiabatic capillary tubes. Applied Thermal Engineering, 2010, 30: 449–457. doi: 10.1016/j.applthermaleng.2009.10.005
|
[23] |
Dubba S K, Kumar R. Flow of refrigerants through capillary tubes: A state-of-the-art. Experimental Thermal and Fluid Science, 2017, 81: 370–381. doi: 10.1016/j.expthermflusci.2016.09.012
|
[24] |
Jadhav P, Agrawal N. A comparative study in the straight and a spiral adiabatic capillary tube. International Journal of Ambient Energy, 2019, 40: 693–698. doi: 10.1080/01430750.2017.1422146
|
[25] |
Alok P, Sahu D. Numerical simulation of capillary tube for selected refrigerants using homogeneous equilibrium model. International Journal of Air-Conditioning and Refrigeration, 2019, 27: 1950001. doi: 10.1142/S2010132519500019
|
[26] |
Jadhav P, Agrawal N. A comparative study of flow characteristics of adiabatic spiral and helical capillary tube in a CO2 transcritical system. International Journal of Ambient Energy, 2021: 1–8. doi: 10.1080/01430750.2021.1913645
|
[27] |
Zareh M, Heidari M G, Javidmand P. Numerical simulation and experimental comparison of the R12, R22 and R134a flow inside straight and coiled helical capillary tubes. Journal of Mechanical Science and Technology, 2016, 30: 1421–1430. doi: 10.1007/s12206-016-0250-2
|
[28] |
Wang J, Cao F, Wang Z Z, et al. Numerical simulation of coiled adiabatic capillary tubes in CO2 transcritical systems with separated flow model including metastable flow. International Journal of Refrigeration, 2012, 35 (8): 2188–2198. doi: 10.1016/j.ijrefrig.2012.07.012
|
[29] |
Agrawal N, Bhattacharyya S. Homogeneous versus separated two phase flow models: Adiabatic capillary tube flow in a transcritical CO2 heat pump. International Journal of Thermal Sciences, 2008, 47 (11): 1555–1562. doi: 10.1016/j.ijthermalsci.2007.12.008
|
[30] |
Furlong T W, Schmidt D P. A comparison of homogenous and separated flow assumptions for adiabatic capillary flow. Applied Thermal Engineering, 2012, 48: 186–193. doi: 10.1016/j.applthermaleng.2012.05.007
|
[31] |
Lorbek L, Kuhelj A, Dular M, et al. Two-phase flow patterns in adiabatic refrigerant flow through capillary tubes. International Journal of Refrigeration, 2020, 115: 107–116. doi: 10.1016/j.ijrefrig.2020.02.030
|
[32] |
Melo C, Ferreira R T S, Neto C B, et al. An experimental analysis of adiabatic capillary tubes. Applied Thermal Engineering, 1999, 19: 669–684. doi: 10.1016/S1359-4311(98)00062-3
|
[33] |
Collier J G, Thome J R. Convective Boiling and Condensation. 3rd ed. New York: Clarendon Press, 1994.
|
[34] |
Chen Z H, Li R Y, Lin S, et al. A correlation for metastable flow of R-12 through capillary tubes. ASHRAE Transactions, 1990, 96: 550–554.
|
[35] |
Feburie V, Giot M, Granger S, et al. A model for choked flow through cracks with inlet subcooling. International Journal of Multiphase Flow, 1993, 19: 541–562. doi: 10.1016/0301-9322(93)90087-B
|
[36] |
Premoli A, Francesco D, Prina A. An empirical correlation for evaluating two-phase mixture density under adiabatic conditions. In: European Two-Phase Flow Group Meeting, Milan, Italy, 1970.
|
[37] |
Chisholm D. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. International Journal of Heat and Mass Transfer, 1973, 16: 347–358. doi: 10.1016/0017-9310(73)90063-X
|
[38] |
Deodhar S D, Kothadia H B, Iyer K N, et al. Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes. Applied Thermal Engineering, 2015, 90: 879–894. doi: 10.1016/j.applthermaleng.2015.07.073
|
[39] |
Chung M. A numerical procedure for simulation of Fanno flows of refrigerants or refrigerant mixtures in capillary tubes. 1998 ASHRAE Summer Annual Meeting, 1998 [2021-04-10]. https://www.osti.gov/biblio/687663-numerical-procedure-simulation-fanno-flows-refrigerants-refrigerant-mixtures-capillary-tubes.
|
[40] |
Zhang Y F, Zhou G B, Xie H, et al. An assessment of friction factor and viscosity correlations for model prediction of refrigerant flow in capillary tubes. International Journal of Energy Research, 2005, 29 (3): 233–248. doi: 10.1002/er.1050
|
[41] |
Ahmadi M H, Mohseni-Gharyehsafa B, Ghazvini M, et al. Comparing various machine learning approaches in modeling the dynamic viscosity of CuO/water nanofluid. Journal of Thermal Analysis and Calorimetry, 2020, 139: 2585–2599. doi: 10.1007/s10973-019-08762-z
|
[42] |
Zhou G B, Zhang Y F. Numerical and experimental investigations on the performance of coiled adiabatic capillary tubes. Applied Thermal Engineering, 2006, 26: 1106–1114. doi: 10.1016/j.applthermaleng.2005.11.003
|
[43] |
Bansal P K, Wang G. Numerical analysis of choked refrigerant flow in adiabatic capillary tubes. Applied Thermal Engineering, 2004, 24: 851–863. doi: 10.1016/j.applthermaleng.2003.10.010
|
[44] |
Lemmon E, Huber M, McLinden M. NIST Standard Reference Database 23: NIST thermodynamic and transport properties of refrigerants and refrigerant mixtures-REFPROP, version 9.1. Gaithersburg, MD: National Institute of Standards and Technology, 2013.
|