[1] |
Niepa T H R, Hou L, Jiang H, et al. Microbial nanoculture as an artificial microniche. Sci Rep-Uk, 2016, 6(1): 30578.
|
[2] |
Oh M J, Ryu T K, Choi S W. Hollow polydimethylsiloxane beads with a porous structure for cell encapsulation. Macromol Rapid Comm, 2013, 34(21): 1728-1733.
|
[3] |
Tao Y, Rotem A, Zhang H, et al. Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics. Lab on a Chip, 2015, 15(19): 3934-3940.
|
[4] |
Windbergs M, Zhao Y, Heyman J, et al. Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. J. Am. Chem. Soc., 2013, 135(21): 7933-7937.
|
[5] |
Kim S H, Park J G, Choi T M, et al. Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules. Nat. Commun., 2014, 5(1): 3068.
|
[6] |
Yeo S J, Tu F, Kim S H, et al. Angle- and strain-independent coloured free-standing films incorporating non-spherical colloidal photonic crystals. Soft Matter, 2015, 11(8): 1582-1588.
|
[7] |
Chen H, Zhao Y, Li J, et al. Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. Lab on a Chip, 2011, 11(14): 2312-2315.
|
[8] |
Guan X, Hou L, Ren Y, et al. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets. Biomicrofluidics, 2016, 10(3): 034111.
|
[9] |
Lee T Y, Praveenkumar R, Oh Y K, et al. Alginate microgels created by selective coalescence between core drops paired with an ultrathin shell. J. Mater. Chem. B, 2016, 4(19): 3232-3238.
|
[10] |
Brugarolas T, Park B J, Lee M H, et al. Generation ofamphiphilic Janus Bubbles and their behavior at an air-water interface. Adv. Funct. Mater., 2011, 21(20): 3924-3931.
|
[11] |
Kim J H, Jeon T Y, Choi T M, et al. Droplet microfluidics for producing functional microparticles. Langmuir, 2014, 30(6): 1473-1488.
|
[12] |
Abbaspourrad A, Carroll N J, Kim S H, et al. Polymer microcapsules with programmable active release. J. Am. Chem. Soc., 2013, 135(20): 7744-7750.
|
[13] |
Abbaspourrad A, Datta S S, Weitz D A. Controlling release from pH-responsive microcapsules. Langmuir, 2013, 29(41): 12697-12702.
|
[14] |
Amstad E, Kim S H, Weitz D A. Photo-and thermoresponsive polymersomes for triggered release. Angewandte Chemie International Edition, 2012, 51(50): 12499-12503.
|
[15] |
Dilauro A M, Abbaspourrad A, Weitz D A, et al. Stimuli-responsive core-shell microcapsules with tunable rates of release by using a depolymerizable poly(phthalaldehyde) Membrane. Macromolecules, 2013, 46(9): 3309-3313.
|
[16] |
Lensen D, Gelderblom E C, Vriezema D M, et al. Biodegradable polymeric microcapsules for selective ultrasound-triggered drug release. Soft Matter, 2011, 7(11): 5417-5422.
|
[17] |
Florence A T, Whitehill D. The formulation and stability of multiple emulsions. Int J Pharm, 1982, 11(4): 277-308.
|
[18] |
Garti N. Double emulsions—scope, limitations and new achievements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 123-124: 233-246.
|
[19] |
Okushima S, Nisisako T, Torii T, et al. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 2004, 20(23): 9905-9908.
|
[20] |
Chu L Y, Utada A S, Shah R K, et al. Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 2007, 46(47): 8970-8974.
|
[21] |
Utada A S, Lorenceau E, Link D R, et al. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308(5721): 537.
|
[22] |
Ficheux M F, Bonakdar L, Leal-Calderon F, et al. Some stability criteria for double emulsions. Langmuir, 1998, 14(10): 2702-2706.
|
[23] |
Schmidts T, Dobler D, Nissing C, et al. Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions. J. Colloid. Interf. Sci., 2009, 338(1): 184-192.
|
[24] |
Hou L, Ren Y, Jia Y, et al. Osmolarity-controlled swelling behaviors of dual-cored double-emulsion drops. Microfluid Nanofluid, 2017, 21(4): 60.
|
[25] |
Bouyer E, Mekhloufi G, Rosilio V, et al. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: Alternatives to synthetic surfactants in the pharmaceutical field? Int. J. Pharm., 2012, 436(1): 359-378.
|
[26] |
Zhu Q, Qiu S, Zhang H, et al. Physical stability, microstructure and micro-rheological properties of water-in-oil-in-water (W/O/W) emulsions stabilized by porcine gelatin. Food Chem., 2018, 253: 63-70.
|
[27] |
Frasch-Melnik S, Norton I T, Spyropoulos F. Fat-crystal stabilised W/O emulsions for controlled salt release. J. Food Eng., 2010, 98(4): 437-442.
|
[28] |
Pawlik A, Cox P W, Norton I T. Food grade duplex emulsions designed and stabilised with different osmotic pressures. J. Colloid. Interf. Sci., 2010, 352(1): 59-67.
|
[29] |
Márquez A L, Medrano A, Panizzolo L A, et al. Effect of calcium salts and surfactant concentration on the stability of water-in-oil (W/O) emulsions prepared with polyglycerol polyricinoleate. J. Colloid. Interf. Sci., 2010, 341(1): 101-108.
|
[30] |
Florence A T, Whitehill D. Stabilization of water/oil/water multiple emulsions by polymerization of the aqueous phases. Journal of Pharmacy and Pharmacology, 1982, 34(11): 687-691.
|
[31] |
Koroleva M Y, Yurtov E V. Effect of ionic strength of dispersed phase on ostwald ripening in water-in-oil emulsions. Colloid Journal, 2003, 65(1): 40-43.
|
[32] |
Oron A, Davis S H, Bankoff S G. Long-scale evolution of thin liquid films. Reviews of Modern Physics, 1997, 69(3): 931-980.
|
[33] |
González-Ochoa H, Ibarra-Bracamontes L, Arauz-Lara J L. Two-stage coalescence in double emulsions. Langmuir, 2003, 19(19): 7837-7840.
|
[34] |
Takamura K, Fischer H, Morrow N R. Physical properties of aqueous glycerol solutions. J. Petrol. Sci. Eng., 2012, 98-99: 50-60.
|
[35] |
Oppermann A K L, Noppers J M E, Stieger M, et al. Effect of outer water phase composition on oil droplet size and yield of (W1/O/W2) double emulsions. Food Res. Int., 2018, 107: 148-157.
|
[36] |
Magdassi S, Frank S G.Formation of oil-in-glycerol/water emulsions. J. Disper. Sci. Technol., 1986, 7(5): 599-612.
|
[1] |
Niepa T H R, Hou L, Jiang H, et al. Microbial nanoculture as an artificial microniche. Sci Rep-Uk, 2016, 6(1): 30578.
|
[2] |
Oh M J, Ryu T K, Choi S W. Hollow polydimethylsiloxane beads with a porous structure for cell encapsulation. Macromol Rapid Comm, 2013, 34(21): 1728-1733.
|
[3] |
Tao Y, Rotem A, Zhang H, et al. Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics. Lab on a Chip, 2015, 15(19): 3934-3940.
|
[4] |
Windbergs M, Zhao Y, Heyman J, et al. Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. J. Am. Chem. Soc., 2013, 135(21): 7933-7937.
|
[5] |
Kim S H, Park J G, Choi T M, et al. Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules. Nat. Commun., 2014, 5(1): 3068.
|
[6] |
Yeo S J, Tu F, Kim S H, et al. Angle- and strain-independent coloured free-standing films incorporating non-spherical colloidal photonic crystals. Soft Matter, 2015, 11(8): 1582-1588.
|
[7] |
Chen H, Zhao Y, Li J, et al. Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. Lab on a Chip, 2011, 11(14): 2312-2315.
|
[8] |
Guan X, Hou L, Ren Y, et al. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets. Biomicrofluidics, 2016, 10(3): 034111.
|
[9] |
Lee T Y, Praveenkumar R, Oh Y K, et al. Alginate microgels created by selective coalescence between core drops paired with an ultrathin shell. J. Mater. Chem. B, 2016, 4(19): 3232-3238.
|
[10] |
Brugarolas T, Park B J, Lee M H, et al. Generation ofamphiphilic Janus Bubbles and their behavior at an air-water interface. Adv. Funct. Mater., 2011, 21(20): 3924-3931.
|
[11] |
Kim J H, Jeon T Y, Choi T M, et al. Droplet microfluidics for producing functional microparticles. Langmuir, 2014, 30(6): 1473-1488.
|
[12] |
Abbaspourrad A, Carroll N J, Kim S H, et al. Polymer microcapsules with programmable active release. J. Am. Chem. Soc., 2013, 135(20): 7744-7750.
|
[13] |
Abbaspourrad A, Datta S S, Weitz D A. Controlling release from pH-responsive microcapsules. Langmuir, 2013, 29(41): 12697-12702.
|
[14] |
Amstad E, Kim S H, Weitz D A. Photo-and thermoresponsive polymersomes for triggered release. Angewandte Chemie International Edition, 2012, 51(50): 12499-12503.
|
[15] |
Dilauro A M, Abbaspourrad A, Weitz D A, et al. Stimuli-responsive core-shell microcapsules with tunable rates of release by using a depolymerizable poly(phthalaldehyde) Membrane. Macromolecules, 2013, 46(9): 3309-3313.
|
[16] |
Lensen D, Gelderblom E C, Vriezema D M, et al. Biodegradable polymeric microcapsules for selective ultrasound-triggered drug release. Soft Matter, 2011, 7(11): 5417-5422.
|
[17] |
Florence A T, Whitehill D. The formulation and stability of multiple emulsions. Int J Pharm, 1982, 11(4): 277-308.
|
[18] |
Garti N. Double emulsions—scope, limitations and new achievements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 123-124: 233-246.
|
[19] |
Okushima S, Nisisako T, Torii T, et al. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 2004, 20(23): 9905-9908.
|
[20] |
Chu L Y, Utada A S, Shah R K, et al. Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 2007, 46(47): 8970-8974.
|
[21] |
Utada A S, Lorenceau E, Link D R, et al. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308(5721): 537.
|
[22] |
Ficheux M F, Bonakdar L, Leal-Calderon F, et al. Some stability criteria for double emulsions. Langmuir, 1998, 14(10): 2702-2706.
|
[23] |
Schmidts T, Dobler D, Nissing C, et al. Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions. J. Colloid. Interf. Sci., 2009, 338(1): 184-192.
|
[24] |
Hou L, Ren Y, Jia Y, et al. Osmolarity-controlled swelling behaviors of dual-cored double-emulsion drops. Microfluid Nanofluid, 2017, 21(4): 60.
|
[25] |
Bouyer E, Mekhloufi G, Rosilio V, et al. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: Alternatives to synthetic surfactants in the pharmaceutical field? Int. J. Pharm., 2012, 436(1): 359-378.
|
[26] |
Zhu Q, Qiu S, Zhang H, et al. Physical stability, microstructure and micro-rheological properties of water-in-oil-in-water (W/O/W) emulsions stabilized by porcine gelatin. Food Chem., 2018, 253: 63-70.
|
[27] |
Frasch-Melnik S, Norton I T, Spyropoulos F. Fat-crystal stabilised W/O emulsions for controlled salt release. J. Food Eng., 2010, 98(4): 437-442.
|
[28] |
Pawlik A, Cox P W, Norton I T. Food grade duplex emulsions designed and stabilised with different osmotic pressures. J. Colloid. Interf. Sci., 2010, 352(1): 59-67.
|
[29] |
Márquez A L, Medrano A, Panizzolo L A, et al. Effect of calcium salts and surfactant concentration on the stability of water-in-oil (W/O) emulsions prepared with polyglycerol polyricinoleate. J. Colloid. Interf. Sci., 2010, 341(1): 101-108.
|
[30] |
Florence A T, Whitehill D. Stabilization of water/oil/water multiple emulsions by polymerization of the aqueous phases. Journal of Pharmacy and Pharmacology, 1982, 34(11): 687-691.
|
[31] |
Koroleva M Y, Yurtov E V. Effect of ionic strength of dispersed phase on ostwald ripening in water-in-oil emulsions. Colloid Journal, 2003, 65(1): 40-43.
|
[32] |
Oron A, Davis S H, Bankoff S G. Long-scale evolution of thin liquid films. Reviews of Modern Physics, 1997, 69(3): 931-980.
|
[33] |
González-Ochoa H, Ibarra-Bracamontes L, Arauz-Lara J L. Two-stage coalescence in double emulsions. Langmuir, 2003, 19(19): 7837-7840.
|
[34] |
Takamura K, Fischer H, Morrow N R. Physical properties of aqueous glycerol solutions. J. Petrol. Sci. Eng., 2012, 98-99: 50-60.
|
[35] |
Oppermann A K L, Noppers J M E, Stieger M, et al. Effect of outer water phase composition on oil droplet size and yield of (W1/O/W2) double emulsions. Food Res. Int., 2018, 107: 148-157.
|
[36] |
Magdassi S, Frank S G.Formation of oil-in-glycerol/water emulsions. J. Disper. Sci. Technol., 1986, 7(5): 599-612.
|