[1] |
TAIMANOV I A. Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds[J]. Math USSR Izv, 1988, 30: 403-409.
|
[2] |
BOLSINOV A V, JOVANOVIC B. Integrable geodesic flows on Riemannian manifolds: Construction and obstructions[C]// Contemporary Geometry and Related Topics. River Edge, NJ: World Scientic, 2004: 57-103.
|
[3] |
MATVEEV V S. Quadratically integrable geodesic flows on the torus and on the Klein bottle[J]. Regul Chaotic Dyn, 1997, 2: 96-102.
|
[4] |
WALTERS P. An Introduction to Ergodic Theory[M]. New York: Springer-Verlag, 1982.
|
[5] |
CHEN C, LIU F, ZHANG X. Orthogonal separable Hamiltonian systems on T2[J]. Science in China Series A: Mathematics, 2007, 50: 1 735-1 747.
|
[6] |
THOMPSON G. Killing tensors in spaces of constant curvature[J]. J Math Phys, 1986, 27: 2 693-2 699.
|
[7] |
CRAMPIN M. Hidden symmetries and Killing tensors[J]. Reports on Mathematical Physics, 1984, 20: 31-40.
|
[8] |
BRUCE A T, MCLENAGHAN R G, SMIRNOV R G. A geometrical approach to the problem of integrability of Hamiltonian systems by separation of variables[J]. Journal of Geometry and Physics, 2001, 39: 301-322.
|
[9] |
PATERNAIN G. Entropy and completely integrable Hamiltonian systems[J]. Proc Amer Math Soc, 1991, 113: 871-873.
|
[1] |
TAIMANOV I A. Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds[J]. Math USSR Izv, 1988, 30: 403-409.
|
[2] |
BOLSINOV A V, JOVANOVIC B. Integrable geodesic flows on Riemannian manifolds: Construction and obstructions[C]// Contemporary Geometry and Related Topics. River Edge, NJ: World Scientic, 2004: 57-103.
|
[3] |
MATVEEV V S. Quadratically integrable geodesic flows on the torus and on the Klein bottle[J]. Regul Chaotic Dyn, 1997, 2: 96-102.
|
[4] |
WALTERS P. An Introduction to Ergodic Theory[M]. New York: Springer-Verlag, 1982.
|
[5] |
CHEN C, LIU F, ZHANG X. Orthogonal separable Hamiltonian systems on T2[J]. Science in China Series A: Mathematics, 2007, 50: 1 735-1 747.
|
[6] |
THOMPSON G. Killing tensors in spaces of constant curvature[J]. J Math Phys, 1986, 27: 2 693-2 699.
|
[7] |
CRAMPIN M. Hidden symmetries and Killing tensors[J]. Reports on Mathematical Physics, 1984, 20: 31-40.
|
[8] |
BRUCE A T, MCLENAGHAN R G, SMIRNOV R G. A geometrical approach to the problem of integrability of Hamiltonian systems by separation of variables[J]. Journal of Geometry and Physics, 2001, 39: 301-322.
|
[9] |
PATERNAIN G. Entropy and completely integrable Hamiltonian systems[J]. Proc Amer Math Soc, 1991, 113: 871-873.
|