
The use of intercalation-type metal oxides as anode materials in rechargeable lithium-ion batteries is appealing due to their reduced risk of Li plating at low voltages. However, their implementation for fast-charging applications is limited by their lower energy and power density, as well as cycling instability. Herein, we present an amorphous TiO2 nanosheet that exhibits exceptional cycling stability with a high capacity of 231 mA·h·g−1 after 200 cycles at 500 mA·g−1 and 156.7 mA·h·g−1 after 1000 cycles at a high current density of 6 A·g−1. We attribute the enhanced rate performance to the amorphous nature with high isotropy, which facilitates low energy migration paths and ion availability and can accommodate large changes in volume. This work suggests that amorphization represents a promising strategy for developing unconventional metal oxide electrode materials with high-rate performance.
Titanium dioxide anode with enhanced lithium storage by amorphization.
Figure 1. (a) Schematic illustration of the synthesis of a-TiO2 and c-TiO2. (b) SEM image of a-TiO2. (c) SEM image of a-TiO2 for details. (d) TEM image of a-TiO2. (e) HRTEM image of a-TiO2 with the inset of SAED pattern. (f) TEM image of c-TiO2. (g) HRTEM image of c-TiO2 with the inset of the SAED pattern.
Figure 3. (a) Detailed schemes of TiO2-based lithium-ion batteries. (b) CV curves at 0.1 mV·s−1. (c) Galvanostatic discharge/charge profiles of the 1st, 2nd and 10th cycles at 50 mA·g−1. (d) Rate performance. (e) Cycling performances of the a-TiO2 and c-TiO2 electrodes at 500 mA·g−1. (f) Cycling performances at 6 A·g−1.
Figure 5. (a) Li+ diffusion coefficient of a-TiO2 and c-TiO2 during discharging. (b) Li+ diffusion coefficient of a-TiO2 and c-TiO2 during charging. (c) Electrochemical impedance spectroscopy after 10, 50, and 100 cycles at a current density of 500 mA·g−1. (d) Electrochemical impedance spectroscopy after 10, 50, and 100 cycles at a current density of 2 A·g−1.
[1] |
Li S Q, Wang K, Zhang G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives. Adv. Funct. Mater., 2022, 32 (23): 2200796. DOI: 10.1002/adfm.202200796
|
[2] |
Li M, Lu J, Chen Z, et al. 30 years of lithium-ion batteries. Adv. Mater., 2018, 30 (33): 1800561. DOI: 10.1002/adma.201800561
|
[3] |
Wang W G, Liu Y, Wu X, et al. Advances of TiO2 as negative electrode materials for sodium-ion batteries. Adv. Mater. Technol., 2018, 3 (9): 1800004. DOI: 10.1002/admt.201800004
|
[4] |
Zhang Y Y, Tang Y X, Li W L, et al. Nanostructured TiO2-based anode materials for high-performance rechargeable lithium-ion batteries. ChemNanoMat, 2016, 2 (8): 764–775. DOI: 10.1002/cnma.201600093
|
[5] |
Yan X D, Wang Z H, He M, et al. TiO2 nanomaterials as anode materials for lithium-ion rechargeable batteries. Energy Technology, 2015, 3 (8): 801–814. DOI: 10.1002/ente.201500039
|
[6] |
Barnes P, Zuo Y, Dixon K, et al. Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries. Nat. Mater., 2022, 21 (7): 795–803. DOI: 10.1038/s41563-022-01242-0
|
[7] |
Liu Y, Ding C F, Yan X D, et al. Interface-strain-confined synthesis of amorphous TiO2 mesoporous nanosheets with stable pseudocapacitive lithium storage. Chem. Eng. J., 2021, 420: 129894. DOI: 10.1016/j.cej.2021.129894
|
[8] |
Zhou M, Xu Y, Wang C L, et al. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy, 2017, 31: 514–524. DOI: 10.1016/j.nanoen.2016.12.005
|
[9] |
Zhou M, Xu Y, Xiang J X, et al. Sodium-ion batteries: Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Adv. Energy Mater., 2016, 6 (23): 1600448. DOI: 10.1002/aenm.201600448
|
[10] |
Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci., 2014, 7 (5): 1597–1614. DOI: 10.1039/c3ee44164d
|
[11] |
Xiong H, Yildirim H, Shevchenko E V, et al. Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J. Phys. Chem. C, 2012, 116: 3181–3187. DOI: 10.1021/jp210793u
|
[12] |
Gao Q, Gu M, Nie A M, et al. Direct evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes. Chem. Mater., 2014, 26 (4): 1660–1669. DOI: 10.1021/cm403951b
|
[13] |
Liu Y, Ding C F, Xie P T, et al. Surface-reconstructed formation of hierarchical TiO2 mesoporous nanosheets with fast lithium-storage capability. Mater. Chem. Front., 2021, 5 (7): 3216–3225. DOI: 10.1039/D1QM00065A
|
[14] |
Yan S H, Abhilash K P, Tang L Y, et al. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small, 2019, 15 (4): 1804371. DOI: 10.1002/smll.201804371
|
[15] |
Deng C J, Lau M L, Ma C R, et al. A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. J. Mater. Chem. A, 2020, 8: 3333–3343. DOI: 10.1039/C9TA12499C
|
[16] |
Wu J X, Liu H W, Tang A W, et al. Unexpected reversible crystalline/amorphous (de)lithiation transformations enabling fast (dis)charge of high-capacity anatase mesocrystal anode. Nano Energy, 2022, 102: 107715. DOI: 10.1016/j.nanoen.2022.107715
|
[17] |
Qi Y, Zeng X Q, Xiao L P, et al. An invisible hand: Hydrogen bonding guided synthesis of ultrathin two-dimensional amorphous TiO2 nanosheets. Sci. China Mater., 2022, 65 (11): 3017–3024. DOI: 10.1007/s40843-022-2097-2
|
[18] |
Li Q W, Wang H, Tang X F, et al. Electrical conductivity adjustment for interface capacitive-like storage in sodium-ion battery. Adv. Funct. Mater., 2021, 31 (24): 2101081. DOI: 10.1002/adfm.202101081
|
[19] |
Han J, Hirata A, Du J, et al. Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49: 354–362. DOI: 10.1016/j.nanoen.2018.04.063
|
[20] |
Lu C X, Li X Y, Liu R H, et al. Optimized Ti–O subcompounds and elastic expanded MXene interlayers boost quick sodium storage performance. Adv. Funct. Mater., 2023, 33 (19): 2215228. DOI: 10.1002/adfm.202215228
|
[21] |
Yang J P, Wang Y X, Li W, et al. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater., 2017, 29 (48): 1700523. DOI: 10.1002/adma.201700523
|
[22] |
Ye J, Shea P, Baumgaertel A C, et al. Amorphization as a pathway to fast charging kinetics in atomic layer deposition-derived titania films for lithium ion batteries. Chem. Mater., 2018, 30 (24): 8871–8882. DOI: 10.1021/acs.chemmater.8b04002
|