[1] |
BRESSER D, HOSOI K, HOWELL D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA[J]. J. Power Sources, 2018, 382: 176-178.
|
[2] |
程涛, 王欣媛, 王向阳, 等. 轻质、高稳定石墨纸锂离子电池负极集流体[J]. 中国科学技术大学学报, 2017, 47(12): 971-977.CHENG Tao, WANG Xinyuan, WANG Xiangyang, et al. Light weight and highly stable graphite paper as anode current collectors for lithium ion batteries[J].Journal of University of Science and Technology of China, 2017, 47(12): 971-977.
|
[3] |
WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
|
[4] |
YUN F L, TANG L, LI W C, et al. Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery[J]. Rare Metals, 2016, 35(4): 309-319.
|
[5] |
XU M, ZHANG Z, WANG X, et al. Two-dimensional electrochemical-thermal coupled modeling of cylindrical LiFePO4 batteries[J]. Journal of Power Sources, 2014, 256: 233-243.
|
[6] |
DU S, LAI Y, AI L, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510.
|
[7] |
PENG P, JIANG F. Thermal safety of lithium-ion batteries with various cathode materials: A numerical study[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1008-1016.
|
[8] |
李腾, 林成涛, 陈全世. 锂离子电池热模型研究进展[J]. 电源技术, 2009, 33(10): 927-932.LI Teng, LIN Chengtao, CHEN Quanshi. Research development on lithium-ion battery thermal model[J]. Chinese Journal of Power Sources, 2009,33(10): 927-932.
|
[9] |
AL-HALLAJ S, SELMAN J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications[J]. Journal of Power Sources, 2002, 110(2): 341-348.
|
[10] |
ONDA K, OHSHIMA T, NAKAYAMA M, et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J]. Journal of Power sources, 2006, 158(1): 535-542.
|
[11] |
DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903.
|
[12] |
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533.
|
[13] |
GU W B, WANG C Y. Thermal-electrochemical modeling of battery systems[J]. Journal of The Electrochemical Society, 2000, 147(8): 2910-2922.
|
[14] |
CHEN S C, WAN C C, WANG Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140 (1): 111-124.
|
[15] |
KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2): 476-489.
|
[16] |
LAI Y, DU S, AI L, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13039-13049.
|
[17] |
DONG T, PENG P, JIANG F. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International Journal of Heat and Mass Transfer, 2018, 117: 261-272.
|
[18] |
MEI W, CHEN H, SUN J, et al. Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective[J]. Applied Thermal Engineering, 2018, 142: 148-165.
|
[19] |
MEI W, CHEN H, SUN J, et al. The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical-thermal coupling model[J]. Sustainable Energy & Fuels, 2019, 3: 148-165.
|
[20] |
EDDAHECH A, BRIAT O, VINASSA J M. Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes[J]. Energy, 2013, 61: 432-439.
|
[21] |
WU M S, WANG Y Y, WAN C C. Thermal behaviour of nickel/metal hydride batteries during charge and discharge[J]. Journal of Power Sources, 1998, 74(2): 202-210.
|
[22] |
CHEN Y, EVANS J W. Thermal analysis of lithium polymer electrolyte batteries by a two dimensional model-thermal behaviour and design optimization[J]. Electrochimica Acta, 1994, 39(4): 517-526.)
|
[1] |
BRESSER D, HOSOI K, HOWELL D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA[J]. J. Power Sources, 2018, 382: 176-178.
|
[2] |
程涛, 王欣媛, 王向阳, 等. 轻质、高稳定石墨纸锂离子电池负极集流体[J]. 中国科学技术大学学报, 2017, 47(12): 971-977.CHENG Tao, WANG Xinyuan, WANG Xiangyang, et al. Light weight and highly stable graphite paper as anode current collectors for lithium ion batteries[J].Journal of University of Science and Technology of China, 2017, 47(12): 971-977.
|
[3] |
WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
|
[4] |
YUN F L, TANG L, LI W C, et al. Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery[J]. Rare Metals, 2016, 35(4): 309-319.
|
[5] |
XU M, ZHANG Z, WANG X, et al. Two-dimensional electrochemical-thermal coupled modeling of cylindrical LiFePO4 batteries[J]. Journal of Power Sources, 2014, 256: 233-243.
|
[6] |
DU S, LAI Y, AI L, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510.
|
[7] |
PENG P, JIANG F. Thermal safety of lithium-ion batteries with various cathode materials: A numerical study[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1008-1016.
|
[8] |
李腾, 林成涛, 陈全世. 锂离子电池热模型研究进展[J]. 电源技术, 2009, 33(10): 927-932.LI Teng, LIN Chengtao, CHEN Quanshi. Research development on lithium-ion battery thermal model[J]. Chinese Journal of Power Sources, 2009,33(10): 927-932.
|
[9] |
AL-HALLAJ S, SELMAN J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications[J]. Journal of Power Sources, 2002, 110(2): 341-348.
|
[10] |
ONDA K, OHSHIMA T, NAKAYAMA M, et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J]. Journal of Power sources, 2006, 158(1): 535-542.
|
[11] |
DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903.
|
[12] |
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533.
|
[13] |
GU W B, WANG C Y. Thermal-electrochemical modeling of battery systems[J]. Journal of The Electrochemical Society, 2000, 147(8): 2910-2922.
|
[14] |
CHEN S C, WAN C C, WANG Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140 (1): 111-124.
|
[15] |
KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2): 476-489.
|
[16] |
LAI Y, DU S, AI L, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13039-13049.
|
[17] |
DONG T, PENG P, JIANG F. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International Journal of Heat and Mass Transfer, 2018, 117: 261-272.
|
[18] |
MEI W, CHEN H, SUN J, et al. Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective[J]. Applied Thermal Engineering, 2018, 142: 148-165.
|
[19] |
MEI W, CHEN H, SUN J, et al. The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical-thermal coupling model[J]. Sustainable Energy & Fuels, 2019, 3: 148-165.
|
[20] |
EDDAHECH A, BRIAT O, VINASSA J M. Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes[J]. Energy, 2013, 61: 432-439.
|
[21] |
WU M S, WANG Y Y, WAN C C. Thermal behaviour of nickel/metal hydride batteries during charge and discharge[J]. Journal of Power Sources, 1998, 74(2): 202-210.
|
[22] |
CHEN Y, EVANS J W. Thermal analysis of lithium polymer electrolyte batteries by a two dimensional model-thermal behaviour and design optimization[J]. Electrochimica Acta, 1994, 39(4): 517-526.)
|