ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

The regulation of hypothalamic corticotropin releasing

Cite this:
More Information
  • Corresponding author: ZHOU Jiang-ning, E-mail: jnzhou@ustc.edu.cn
  • Received Date: 28 June 2008
  • Rev Recd Date: 08 July 2008
  • Publish Date: 31 August 2008
  • Our recent studies reported that the expression of estrogen receptor (ER) and androgen receptor (AR) in corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of hypothalamus increases in depressed patients. Estrogen and androgen can modulate the transcription activity of CRH by binding ER or AR, which act on the estrogen response elements (EREs) and androgen response elements (AREs) on the human CRH gene promoter respectively. Androgen inhibits the activity of the CRH gene promoter while estrogen activates CRH gene expression. In addition to ER and AR, multiple receptors in the hypothalamus which regulate the activity of CRH neurons show a disturbed balance in depressed patients. Drug targeting to glucocorticoid receptors and sex hormone receptors might be useful for improving depressive behavior by modulating the neurons of different areas in the hippocampus. Based on these findings, we proposed the hypothesis that imbalances of multiple receptors in the hypothalamus may contribute to depression.
    Our recent studies reported that the expression of estrogen receptor (ER) and androgen receptor (AR) in corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of hypothalamus increases in depressed patients. Estrogen and androgen can modulate the transcription activity of CRH by binding ER or AR, which act on the estrogen response elements (EREs) and androgen response elements (AREs) on the human CRH gene promoter respectively. Androgen inhibits the activity of the CRH gene promoter while estrogen activates CRH gene expression. In addition to ER and AR, multiple receptors in the hypothalamus which regulate the activity of CRH neurons show a disturbed balance in depressed patients. Drug targeting to glucocorticoid receptors and sex hormone receptors might be useful for improving depressive behavior by modulating the neurons of different areas in the hippocampus. Based on these findings, we proposed the hypothesis that imbalances of multiple receptors in the hypothalamus may contribute to depression.
  • loading
  • [1]
    王金荣, 王德平. 中国七个地区情感性精神障碍流行病学调查[J]. 中华精神科杂志, 1998, 31(2):75-77.
    [2]
    陆林, 黄明生. 三所精神病院住院患者的抑郁性障碍患病率的调查[J]. 中华精神科杂志, 1999, 32(4):236-238.
    [3]
    Chen R, Hu Z, Qin X, et al. A community-based study of depression in older people in Hefei, China: The GMS-AGECAT prevalence, case validation and socio-economic correlates[J]. Int J Geriatr Psychiatry, 2004, 19(5):407-413.
    [4]
    Liu C Y, Wang S J, Teng E L, et al. Depressive disorders among older residents in a Chinese rural community[J]. Psychol Med, 1997, 27(4):943-949.
    [5]
    Lee D, Yip A, Chiu H, et al. A psychiatric epidemiological study of postpartum Chinese women[J]. Am J Psychiatry, 2001, 158(2):220-226.
    [6]
    Keller M B. Past, present, and future directions for defining optimal treatment outcome in depression: remission and beyond[J]. Jama, 2003, 289(23):3 152-3 160.
    [7]
    Holden C. Future brightening for depression treatments[J]. Science, 2003, 302(5646):810-813.
    [8]
    Holsboer F. The corticosteroid receptor hypothesis of depression[J]. Neuropsychopharmacology, 2000, 23(5):477-501.
    [9]
    Stenzel-Poore M P, Heinrichs S C, Rivest S, et al. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior[J]. J Neurosci, 1994, 14(5 Pt 1):2 579-2 584.
    [10]
    Flores B H, Kenna H, Keller J, et al. Clinical and biological effects of mifepristone treatment for psychotic depression[J]. Neuropsychopharmacology, 2006, 31(3):628-636.
    [11]
    Young E A, Lopez J F, Murphy-Weinberg V, et al. Mineralocorticoid receptor function in major depression[J]. Arch Gen Psychiatry, 2003, 60(1):24-28.
    [12]
    Reus V I, Wolkowitz O M, Frederick S. Antiglucocorticoid treatments in psychiatry[J]. Psychoneuroendocrinology, 1997, 22 Suppl 1:S121-124.
    [13]
    Bao A M, Meynen G, Swaab D F. The stress system in depression and neurodegeneration: Focus on the human hypothalamus[J]. Brain Res Rev, 2008,57(2):531-553.
    [14]
    Wu L M, Han H, Wang Q N, et al. Mifepristone repairs region-dependent alteration of synapsin I in hippocampus in rat model of depression[J]. Neuropsychopharmacology, 2007, 32(12):2 500-2 510.
    [15]
    Huttner W B, Schiebler W, Greengard P, et al. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation[J]. J Cell Biol, 1983, 96(5):1 374-1 388.
    [16]
    De Camilli P, Benfenati F, Valtorta F, et al. The synapsins[J]. Annu Rev Cell Biol, 1990, 6:433-460.
    [17]
    Thiel G. Synapsin I, synapsin II, and synaptophysin: marker proteins of synaptic vesicles[J]. Brain Pathol, 1993, 3(1):87-95.
    [18]
    Pawlak R, Rao B S, Melchor J P, et al. Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus[J]. Proc Natl Acad Sci U S A, 2005, 102(50):18 201-18 206.
    [19]
    Cadepond F, Ulmann A, Baulieu E E. RU486 (mifepristone): Mechanisms of action and clinical uses[J]. Annu Rev Med, 1997, 48:129-156.
    [20]
    Magarinos A M, McEwen B S, Flugge G, et al. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews[J]. J Neurosci, 1996, 16(10):3 534-3 540.
    [21]
    Krugers H J, Goltstein P M, van der Linden S, et al. Blockade of glucocorticoid receptors rapidly restores hippocampal CA1 synaptic plasticity after exposure to chronic stress[J]. Eur J Neurosci, 2006, 23(11):3 051-3 055.
    [22]
    Sheng Z, Yanai A, Fujinaga R, et al. Gonadal and adrenal effects on the glucocorticoid receptor in the rat hippocampus, with special reference to regulation by estrogen from an immunohistochemical view-point[J]. Neurosci Res, 2003, 46(2):205-218.
    [23]
    Sun H, Cheng X P, You-Ye Z, et al. Quercetin subunit specifically reduces GlyR-mediated current in rat hippocampal neurons[J]. Neuroscience, 2007, 148(2):548-559.
    [24]
    Bao A M, Ji Y F, van Someren E J, et al. Diurnal rhythms of free estradiol and cortisol during the normal menstrual cycle in women with major depression[J]. Horm Behav, 2004, 45(2):93-102.
    [25]
    Bao A M, Liu R Y, van Someren E J, et al. Diurnal rhythm of free estradiol during the menstrual cycle[J]. Eur J Endocrinol, 2003, 148(2):227-232.
    [26]
    Lund T D, Munson D J, Haldy M E, et al. Androgen inhibits, while oestrogen enhances, restraint-induced activation of neuropeptide neurones in the paraventricular nucleus of the hypothalamus[J]. J Neuroendocrinol, 2004, 16(3):272-278.
    [27]
    Seale J V, Wood S A, Atkinson H C, et al. Gonadectomy reverses the sexually diergic patterns of circadian and stress-induced hypothalamic-pituitary-adrenal axis activity in male and female rats[J]. J Neuroendocrinol, 2004, 16(6):516-524.
    [28]
    Bao A M, Hestiantoro A, Van Someren E J, et al. Colocalization of corticotropin-releasing hormone and oestrogen receptor-alpha in the paraventricular nucleus of the hypothalamus in mood disorders[J]. Brain, 2005, 128(Pt 6):1 301-1 313.
    [29]
    Isgor C, Cecchi M, Kabbaj M, et al. Estrogen receptor beta in the paraventricular nucleus of hypothalamus regulates the neuroendocrine response to stress and is regulated by corticosterone[J]. Neuroscience, 2003, 121(4):837-845.
    [30]
    Hu X Y, Qin S, Lu Y P, et al. Decreased estrogen receptor-alpha expression in hippocampal neurons in relation to hyperphosphorylated tau in Alzheimer patients[J]. Acta Neuropathol, 2003, 106(3):213-220.
    [31]
    Lu Y P, Zeng M, Swaab D F, et al. Colocalization and alteration of estrogen receptor-alpha and -beta in the hippocampus in Alzheimers disease[J]. Hum Pathol, 2004, 35(3):275-280.
    [32]
    Gustafsson J A. What pharmacologists can learn from recent advances in estrogen signalling[J]. Trends Pharmacol Sci, 2003, 24(9):479-485.
    [33]
    Vamvakopoulos N C, Chrousos G P. Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimophism of the stress response and immune/inflammatory reaction[J]. J Clin Invest, 1993, 92(4):1 896-1 902.
    [34]
    Dibbs K I, Anteby E, Mallon M A, et al. Transcriptional regulation of human placental corticotropin-releasing factor by prostaglandins and estradiol[J]. Biol Reprod, 1997, 57(6):1 285-1 292.
    [35]
    Ni X, Hou Y, King B R, et al. Estrogen receptor-mediated down-regulation of corticotropin-releasing hormone gene expression is dependent on a cyclic adenosine 3′,5′-monophosphate regulatory element in human placental syncytiotrophoblast cells[J]. J Clin Endocrinol Metab, 2004, 89(5):2 312-2 318.
    [36]
    Lalmansingh A S, Uht R M. Estradiol regulates corticotropin-releasing hormone gene (crh) expression in a rapid and phasic manner that parallels estrogen receptor-alpha and -beta recruitment to a 3′,5′-cyclic adenosine 5′-monophosphate regulatory region of the proximal crh promoter[J]. Endocrinology, 2008, 149(1):346-357.
    [37]
    Faus H, Haendler B. Post-translational modifications of steroid receptors[J]. Biomed Pharmacother, 2006, 60(9):520-528.
    [38]
    Chauchereau A, Amazit L, Quesne M, et al. Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1[J]. J Biol Chem, 2003, 278(14):12 335-12 343.
    [39]
    Zhu H, Zhou J N. SUMO1 enhanced 17-beta estradiol induced CRH promoter activation through estrogen receptors[J]. Neuroendocrinology Letters, 2008,29(2):230-234.
    [40]
    Huang Q, Zhu H, Fischer D F, et al. An estrogenic effect of 5α-androstane-3β, 17β-diol on the behavioral response to stress and on CRH regulation[J]. Neuropharmacology, 2008,54(8):1 233-1 238.
    [41]
    Alves S E, Lopez V, McEwen B S, et al. Differential colocalization of estrogen receptor beta (ERbeta) with oxytocin and vasopressin in the paraventricular and supraoptic nuclei of the female rat brain: an immunocytochemical study[J]. Proc Natl Acad Sci U S A, 1998, 95(6):3 281-3 286.
    [42]
    Laflamme N, Nappi R E, Drolet G, et al. Expression and neuropeptidergic characterization of estrogen receptors (ERalpha and ERbeta) throughout the rat brain: anatomical evidence of distinct roles of each subtype[J]. J Neurobiol, 1998, 36(3):357-378.
    [43]
    Wang S S, Kamphuis W, Huitinga I, et al. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: The presence of multiple receptor imbalances[J]. Mol Psychiatry, 2008,doi: 101038/mp2008.38.
    [44]
    Raadsheer F C, van Heerikhuize J J, Lucassen P J, et al. Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimers disease and depression[J]. Am J Psychiatry, 1995, 152(9):1 372-1 376.
    [45]
    Raadsheer F C, Hoogendijk W J, Stam F C, et al. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients[J]. Neuroendocrinology, 1994, 60(4):436-444.
    [46]
    Merali Z, Kent P, Du L, et al. Corticotropin-releasing hormone, arginine vasopressin, gastrin-releasing peptide, and neuromedin B alterations in stress-relevant brain regions of suicides and control subjects[J]. Biol Psychiatry, 2006, 59(7):594-602.
    [47]
    Mansi J A, Rivest S, Drolet G. Regulation of corticotropin-releasing factor type 1 (CRF1) receptor messenger ribonucleic acid in the paraventricular nucleus of rat hypothalamus by exogenous CRF[J]. Endocrinology, 1996, 137(11):4 619-4 629.
    [48]
    Imaki T, Katsumata H, Miyata M, et al. Expression of corticotropin-releasing hormone type 1 receptor in paraventricular nucleus after acute stress[J]. Neuroendocrinology, 2001, 73(5):293-301.
    [49]
    Silverman AJ, Hou-Yu A, Chen W P. Corticotropin-releasing factor synapses within the paraventricular nucleus of the hypothalamus[J]. Neuroendocrinology, 1989, 49(3):291-299.
    [50]
    Papiol S, Arias B, Gasto C, et al. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment[J]. J Affect Disord, 2007, 104(1-3):83-90.
    [51]
    Grammatopoulos D K, Chrousos G P. Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists[J]. Trends Endocrinol Metab, 2002, 13(10):436-444.
    [52]
    Kishimoto T, Radulovic J, Radulovic M, et al. Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2[J]. Nat Genet, 2000, 24(4):415-419.
    [53]
    Muller M B, Wurst W. Getting closer to affective disorders: the role of CRH receptor systems[J]. Trends Mol Med, 2004, 10(8):409-415.
    [54]
    Kunzel H E, Zobel A W, Nickel T, et al. Treatment of depression with the CRH-1-receptor antagonist R121919: endocrine changes and side effects[J]. J Psychiatr Res, 2003, 37(6):525-533.
    [55]
    de Kloet E R, Derijk R H, Meijer O C. Therapy insight: Is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression?[J]. Nat Clin Pract Endocrinol Metab, 2007, 3(2):168-179.
    [56]
    DeRijk R H, Schaaf M, Stam F J, et al. Very low levels of the glucocorticoid receptor beta isoform in the human hippocampus as shown by Taqman RT-PCR and immunocytochemistry[J]. Brain Res Mol Brain Res, 2003, 116(1-2):17-26.
    [57]
    Trapp T, Holsboer F. Heterodimerization between mineralocorticoid and glucocorticoid receptors increases the functional diversity of corticosteroid action[J]. Trends Pharmacol Sci, 1996, 17(4):145-149.
    [58]
    Tissing W J, Meijerink J P, den Boer M L, et al. mRNA expression levels of (co)chaperone molecules of the glucocorticoid receptor are not involved in glucocorticoid resistance in pediatric ALL[J]. Leukemia, 2005, 19(5):727-733.
    [59]
    Shen W W, Liu H C, Yang Y Y, et al. Anti-heat shock protein 90 is increased in acute mania[J]. Aust N Z J Psychiatry, 2006, 40(8):712-716.
    [60]
    Shimizu S, Nomura K, Ujihara M, et al. An allel-specific abnormal transcript of the heat shock protein 70 gene in patients with major depression[J]. Biochem Biophys Res Commun, 1996, 219(3):745-752.
    [61]
    Bao A M, Meynen G, Swaab D F. The stress system in depression and neurodegeneration: Focus on the human hypothalamus[J]. Brain Res Rev, 2008, 57(2):531-553.
    [62]
    Geng Y G, Su Q R, Su L Y, et al. Comparison of the polymorphisms of androgen receptor gene and estrogen alpha and beta gene between adolescent females with first-onset major depressive disorder and controls[J]. Int J Neurosci, 2007, 117(4):539-547.
    [63]
    Bao A M, Fischer D F, Wu Y H, et al. A direct androgenic involvement in the expression of human corticotropin-releasing hormone[J]. Mol Psychiatry, 2006, 11(6):567-576.
    [64]
    Osterlund M K, Gustafsson J A, Keller E, et al. Estrogen receptor beta (ERbeta) messenger ribonucleic acid (mRNA) expression within the human forebrain: distinct distribution pattern to ERalpha mRNA[J]. J Clin Endocrinol Metab, 2000, 85(10):3 840-3 846.
    [65]
    Paech K, Webb P, Kuiper G G, et al. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites[J]. Science, 1997, 277(5 331):1 508-1 510.
    [66]
    Zubenko G S, Maher B, Hughes H B, 3rd, et al. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression[J]. Am J Med Genet B Neuropsychiatr Genet, 2003, 123(1):1-18.
    [67]
    Legradi G, Holzer D, Kapcala L P, et al. Glucocorticoids inhibit stress-induced phosphorylation of CREB in corticotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus[J]. Neuroendocrinology, 1997, 66(2):86-97.
    [68]
    Nicholson R C, King B R, Smith R. Complex regulatory interactions control CRH gene expression[J]. Front Biosci, 2004, 9:32-39.
    [69]
    Wolfl S, Martinez C, Majzoub J A. Inducible binding of cyclic adenosine 3′,5′-monophosphate (cAMP)-responsive element binding protein (CREB) to a cAMP-responsive promoter in vivo[J]. Mol Endocrinol, 1999, 13(5):659-669.
    [70]
    Hurbin A, Boissin-Agasse L, Orcel H, et al. The V1a and V1b, but not V2, vasopressin receptor genes are expressed in the supraoptic nucleus of the rat hypothalamus, and the transcripts are essentially colocalized in the vasopressinergic magnocellular neurons[J]. Endocrinology, 1998, 139(11):4 701-4 707.
    [71]
    Hurbin A, Orcel H, Alonso G, et al. The vasopressin receptors colocalize with vasopressin in the magnocellular neurons of the rat supraoptic nucleus and are modulated by water balance. Endocrinology, 2002, 143(2):456-466.
    [72]
    Pietranera L, Saravia F, Roig P, et al. Mineralocorticoid treatment upregulates the hypothalamic vasopressinergic system of spontaneously hypertensive rats[J]. Neuroendocrinology, 2004, 80(2):100-110.
    [73]
    Wigger A, Sanchez M M, Mathys K C, et al. Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin[J]. Neuropsychopharmacology, 2004, 29(1):1-14.
    [74]
    Besedovsky H O, del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses[J]. Endocr Rev, 1996, 17(1):64-102.
    [75]
    Hayley S, Poulter M O, Merali Z, et al. The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity[J]. Neuroscience, 2005, 135(3):659-678.
    [76]
    Huitinga I, van der Cammen M, Salm L, et al. IL-1beta immunoreactive neurons in the human hypothalamus: reduced numbers in multiple sclerosis[J]. J Neuroimmunol, 2000, 107(1):8-20.
    [77]
    Kuno R, Yoshida Y, Nitta A, et al. The role of TNF-alpha and its receptors in the production of NGF and GDNF by astrocytes[J]. Brain Res, 2006, 1 116(1):12-18.
    [78]
    Himmerich H, Binder E B, Kunzel H E, et al. Successful antidepressant therapy restores the disturbed interplay between TNF-alpha system and HPA axis[J]. Biol Psychiatry, 2006, 60(8):882-888.
    [79]
    OBrien S M, Scott L V, Dinan T G. Cytokines: abnormalities in major depression and implications for pharmacological treatment[J]. Hum Psychopharmacol, 2004, 19(6):397-403.
  • 加载中

Catalog

    [1]
    王金荣, 王德平. 中国七个地区情感性精神障碍流行病学调查[J]. 中华精神科杂志, 1998, 31(2):75-77.
    [2]
    陆林, 黄明生. 三所精神病院住院患者的抑郁性障碍患病率的调查[J]. 中华精神科杂志, 1999, 32(4):236-238.
    [3]
    Chen R, Hu Z, Qin X, et al. A community-based study of depression in older people in Hefei, China: The GMS-AGECAT prevalence, case validation and socio-economic correlates[J]. Int J Geriatr Psychiatry, 2004, 19(5):407-413.
    [4]
    Liu C Y, Wang S J, Teng E L, et al. Depressive disorders among older residents in a Chinese rural community[J]. Psychol Med, 1997, 27(4):943-949.
    [5]
    Lee D, Yip A, Chiu H, et al. A psychiatric epidemiological study of postpartum Chinese women[J]. Am J Psychiatry, 2001, 158(2):220-226.
    [6]
    Keller M B. Past, present, and future directions for defining optimal treatment outcome in depression: remission and beyond[J]. Jama, 2003, 289(23):3 152-3 160.
    [7]
    Holden C. Future brightening for depression treatments[J]. Science, 2003, 302(5646):810-813.
    [8]
    Holsboer F. The corticosteroid receptor hypothesis of depression[J]. Neuropsychopharmacology, 2000, 23(5):477-501.
    [9]
    Stenzel-Poore M P, Heinrichs S C, Rivest S, et al. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior[J]. J Neurosci, 1994, 14(5 Pt 1):2 579-2 584.
    [10]
    Flores B H, Kenna H, Keller J, et al. Clinical and biological effects of mifepristone treatment for psychotic depression[J]. Neuropsychopharmacology, 2006, 31(3):628-636.
    [11]
    Young E A, Lopez J F, Murphy-Weinberg V, et al. Mineralocorticoid receptor function in major depression[J]. Arch Gen Psychiatry, 2003, 60(1):24-28.
    [12]
    Reus V I, Wolkowitz O M, Frederick S. Antiglucocorticoid treatments in psychiatry[J]. Psychoneuroendocrinology, 1997, 22 Suppl 1:S121-124.
    [13]
    Bao A M, Meynen G, Swaab D F. The stress system in depression and neurodegeneration: Focus on the human hypothalamus[J]. Brain Res Rev, 2008,57(2):531-553.
    [14]
    Wu L M, Han H, Wang Q N, et al. Mifepristone repairs region-dependent alteration of synapsin I in hippocampus in rat model of depression[J]. Neuropsychopharmacology, 2007, 32(12):2 500-2 510.
    [15]
    Huttner W B, Schiebler W, Greengard P, et al. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation[J]. J Cell Biol, 1983, 96(5):1 374-1 388.
    [16]
    De Camilli P, Benfenati F, Valtorta F, et al. The synapsins[J]. Annu Rev Cell Biol, 1990, 6:433-460.
    [17]
    Thiel G. Synapsin I, synapsin II, and synaptophysin: marker proteins of synaptic vesicles[J]. Brain Pathol, 1993, 3(1):87-95.
    [18]
    Pawlak R, Rao B S, Melchor J P, et al. Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus[J]. Proc Natl Acad Sci U S A, 2005, 102(50):18 201-18 206.
    [19]
    Cadepond F, Ulmann A, Baulieu E E. RU486 (mifepristone): Mechanisms of action and clinical uses[J]. Annu Rev Med, 1997, 48:129-156.
    [20]
    Magarinos A M, McEwen B S, Flugge G, et al. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews[J]. J Neurosci, 1996, 16(10):3 534-3 540.
    [21]
    Krugers H J, Goltstein P M, van der Linden S, et al. Blockade of glucocorticoid receptors rapidly restores hippocampal CA1 synaptic plasticity after exposure to chronic stress[J]. Eur J Neurosci, 2006, 23(11):3 051-3 055.
    [22]
    Sheng Z, Yanai A, Fujinaga R, et al. Gonadal and adrenal effects on the glucocorticoid receptor in the rat hippocampus, with special reference to regulation by estrogen from an immunohistochemical view-point[J]. Neurosci Res, 2003, 46(2):205-218.
    [23]
    Sun H, Cheng X P, You-Ye Z, et al. Quercetin subunit specifically reduces GlyR-mediated current in rat hippocampal neurons[J]. Neuroscience, 2007, 148(2):548-559.
    [24]
    Bao A M, Ji Y F, van Someren E J, et al. Diurnal rhythms of free estradiol and cortisol during the normal menstrual cycle in women with major depression[J]. Horm Behav, 2004, 45(2):93-102.
    [25]
    Bao A M, Liu R Y, van Someren E J, et al. Diurnal rhythm of free estradiol during the menstrual cycle[J]. Eur J Endocrinol, 2003, 148(2):227-232.
    [26]
    Lund T D, Munson D J, Haldy M E, et al. Androgen inhibits, while oestrogen enhances, restraint-induced activation of neuropeptide neurones in the paraventricular nucleus of the hypothalamus[J]. J Neuroendocrinol, 2004, 16(3):272-278.
    [27]
    Seale J V, Wood S A, Atkinson H C, et al. Gonadectomy reverses the sexually diergic patterns of circadian and stress-induced hypothalamic-pituitary-adrenal axis activity in male and female rats[J]. J Neuroendocrinol, 2004, 16(6):516-524.
    [28]
    Bao A M, Hestiantoro A, Van Someren E J, et al. Colocalization of corticotropin-releasing hormone and oestrogen receptor-alpha in the paraventricular nucleus of the hypothalamus in mood disorders[J]. Brain, 2005, 128(Pt 6):1 301-1 313.
    [29]
    Isgor C, Cecchi M, Kabbaj M, et al. Estrogen receptor beta in the paraventricular nucleus of hypothalamus regulates the neuroendocrine response to stress and is regulated by corticosterone[J]. Neuroscience, 2003, 121(4):837-845.
    [30]
    Hu X Y, Qin S, Lu Y P, et al. Decreased estrogen receptor-alpha expression in hippocampal neurons in relation to hyperphosphorylated tau in Alzheimer patients[J]. Acta Neuropathol, 2003, 106(3):213-220.
    [31]
    Lu Y P, Zeng M, Swaab D F, et al. Colocalization and alteration of estrogen receptor-alpha and -beta in the hippocampus in Alzheimers disease[J]. Hum Pathol, 2004, 35(3):275-280.
    [32]
    Gustafsson J A. What pharmacologists can learn from recent advances in estrogen signalling[J]. Trends Pharmacol Sci, 2003, 24(9):479-485.
    [33]
    Vamvakopoulos N C, Chrousos G P. Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimophism of the stress response and immune/inflammatory reaction[J]. J Clin Invest, 1993, 92(4):1 896-1 902.
    [34]
    Dibbs K I, Anteby E, Mallon M A, et al. Transcriptional regulation of human placental corticotropin-releasing factor by prostaglandins and estradiol[J]. Biol Reprod, 1997, 57(6):1 285-1 292.
    [35]
    Ni X, Hou Y, King B R, et al. Estrogen receptor-mediated down-regulation of corticotropin-releasing hormone gene expression is dependent on a cyclic adenosine 3′,5′-monophosphate regulatory element in human placental syncytiotrophoblast cells[J]. J Clin Endocrinol Metab, 2004, 89(5):2 312-2 318.
    [36]
    Lalmansingh A S, Uht R M. Estradiol regulates corticotropin-releasing hormone gene (crh) expression in a rapid and phasic manner that parallels estrogen receptor-alpha and -beta recruitment to a 3′,5′-cyclic adenosine 5′-monophosphate regulatory region of the proximal crh promoter[J]. Endocrinology, 2008, 149(1):346-357.
    [37]
    Faus H, Haendler B. Post-translational modifications of steroid receptors[J]. Biomed Pharmacother, 2006, 60(9):520-528.
    [38]
    Chauchereau A, Amazit L, Quesne M, et al. Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1[J]. J Biol Chem, 2003, 278(14):12 335-12 343.
    [39]
    Zhu H, Zhou J N. SUMO1 enhanced 17-beta estradiol induced CRH promoter activation through estrogen receptors[J]. Neuroendocrinology Letters, 2008,29(2):230-234.
    [40]
    Huang Q, Zhu H, Fischer D F, et al. An estrogenic effect of 5α-androstane-3β, 17β-diol on the behavioral response to stress and on CRH regulation[J]. Neuropharmacology, 2008,54(8):1 233-1 238.
    [41]
    Alves S E, Lopez V, McEwen B S, et al. Differential colocalization of estrogen receptor beta (ERbeta) with oxytocin and vasopressin in the paraventricular and supraoptic nuclei of the female rat brain: an immunocytochemical study[J]. Proc Natl Acad Sci U S A, 1998, 95(6):3 281-3 286.
    [42]
    Laflamme N, Nappi R E, Drolet G, et al. Expression and neuropeptidergic characterization of estrogen receptors (ERalpha and ERbeta) throughout the rat brain: anatomical evidence of distinct roles of each subtype[J]. J Neurobiol, 1998, 36(3):357-378.
    [43]
    Wang S S, Kamphuis W, Huitinga I, et al. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: The presence of multiple receptor imbalances[J]. Mol Psychiatry, 2008,doi: 101038/mp2008.38.
    [44]
    Raadsheer F C, van Heerikhuize J J, Lucassen P J, et al. Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimers disease and depression[J]. Am J Psychiatry, 1995, 152(9):1 372-1 376.
    [45]
    Raadsheer F C, Hoogendijk W J, Stam F C, et al. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients[J]. Neuroendocrinology, 1994, 60(4):436-444.
    [46]
    Merali Z, Kent P, Du L, et al. Corticotropin-releasing hormone, arginine vasopressin, gastrin-releasing peptide, and neuromedin B alterations in stress-relevant brain regions of suicides and control subjects[J]. Biol Psychiatry, 2006, 59(7):594-602.
    [47]
    Mansi J A, Rivest S, Drolet G. Regulation of corticotropin-releasing factor type 1 (CRF1) receptor messenger ribonucleic acid in the paraventricular nucleus of rat hypothalamus by exogenous CRF[J]. Endocrinology, 1996, 137(11):4 619-4 629.
    [48]
    Imaki T, Katsumata H, Miyata M, et al. Expression of corticotropin-releasing hormone type 1 receptor in paraventricular nucleus after acute stress[J]. Neuroendocrinology, 2001, 73(5):293-301.
    [49]
    Silverman AJ, Hou-Yu A, Chen W P. Corticotropin-releasing factor synapses within the paraventricular nucleus of the hypothalamus[J]. Neuroendocrinology, 1989, 49(3):291-299.
    [50]
    Papiol S, Arias B, Gasto C, et al. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment[J]. J Affect Disord, 2007, 104(1-3):83-90.
    [51]
    Grammatopoulos D K, Chrousos G P. Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists[J]. Trends Endocrinol Metab, 2002, 13(10):436-444.
    [52]
    Kishimoto T, Radulovic J, Radulovic M, et al. Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2[J]. Nat Genet, 2000, 24(4):415-419.
    [53]
    Muller M B, Wurst W. Getting closer to affective disorders: the role of CRH receptor systems[J]. Trends Mol Med, 2004, 10(8):409-415.
    [54]
    Kunzel H E, Zobel A W, Nickel T, et al. Treatment of depression with the CRH-1-receptor antagonist R121919: endocrine changes and side effects[J]. J Psychiatr Res, 2003, 37(6):525-533.
    [55]
    de Kloet E R, Derijk R H, Meijer O C. Therapy insight: Is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression?[J]. Nat Clin Pract Endocrinol Metab, 2007, 3(2):168-179.
    [56]
    DeRijk R H, Schaaf M, Stam F J, et al. Very low levels of the glucocorticoid receptor beta isoform in the human hippocampus as shown by Taqman RT-PCR and immunocytochemistry[J]. Brain Res Mol Brain Res, 2003, 116(1-2):17-26.
    [57]
    Trapp T, Holsboer F. Heterodimerization between mineralocorticoid and glucocorticoid receptors increases the functional diversity of corticosteroid action[J]. Trends Pharmacol Sci, 1996, 17(4):145-149.
    [58]
    Tissing W J, Meijerink J P, den Boer M L, et al. mRNA expression levels of (co)chaperone molecules of the glucocorticoid receptor are not involved in glucocorticoid resistance in pediatric ALL[J]. Leukemia, 2005, 19(5):727-733.
    [59]
    Shen W W, Liu H C, Yang Y Y, et al. Anti-heat shock protein 90 is increased in acute mania[J]. Aust N Z J Psychiatry, 2006, 40(8):712-716.
    [60]
    Shimizu S, Nomura K, Ujihara M, et al. An allel-specific abnormal transcript of the heat shock protein 70 gene in patients with major depression[J]. Biochem Biophys Res Commun, 1996, 219(3):745-752.
    [61]
    Bao A M, Meynen G, Swaab D F. The stress system in depression and neurodegeneration: Focus on the human hypothalamus[J]. Brain Res Rev, 2008, 57(2):531-553.
    [62]
    Geng Y G, Su Q R, Su L Y, et al. Comparison of the polymorphisms of androgen receptor gene and estrogen alpha and beta gene between adolescent females with first-onset major depressive disorder and controls[J]. Int J Neurosci, 2007, 117(4):539-547.
    [63]
    Bao A M, Fischer D F, Wu Y H, et al. A direct androgenic involvement in the expression of human corticotropin-releasing hormone[J]. Mol Psychiatry, 2006, 11(6):567-576.
    [64]
    Osterlund M K, Gustafsson J A, Keller E, et al. Estrogen receptor beta (ERbeta) messenger ribonucleic acid (mRNA) expression within the human forebrain: distinct distribution pattern to ERalpha mRNA[J]. J Clin Endocrinol Metab, 2000, 85(10):3 840-3 846.
    [65]
    Paech K, Webb P, Kuiper G G, et al. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites[J]. Science, 1997, 277(5 331):1 508-1 510.
    [66]
    Zubenko G S, Maher B, Hughes H B, 3rd, et al. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression[J]. Am J Med Genet B Neuropsychiatr Genet, 2003, 123(1):1-18.
    [67]
    Legradi G, Holzer D, Kapcala L P, et al. Glucocorticoids inhibit stress-induced phosphorylation of CREB in corticotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus[J]. Neuroendocrinology, 1997, 66(2):86-97.
    [68]
    Nicholson R C, King B R, Smith R. Complex regulatory interactions control CRH gene expression[J]. Front Biosci, 2004, 9:32-39.
    [69]
    Wolfl S, Martinez C, Majzoub J A. Inducible binding of cyclic adenosine 3′,5′-monophosphate (cAMP)-responsive element binding protein (CREB) to a cAMP-responsive promoter in vivo[J]. Mol Endocrinol, 1999, 13(5):659-669.
    [70]
    Hurbin A, Boissin-Agasse L, Orcel H, et al. The V1a and V1b, but not V2, vasopressin receptor genes are expressed in the supraoptic nucleus of the rat hypothalamus, and the transcripts are essentially colocalized in the vasopressinergic magnocellular neurons[J]. Endocrinology, 1998, 139(11):4 701-4 707.
    [71]
    Hurbin A, Orcel H, Alonso G, et al. The vasopressin receptors colocalize with vasopressin in the magnocellular neurons of the rat supraoptic nucleus and are modulated by water balance. Endocrinology, 2002, 143(2):456-466.
    [72]
    Pietranera L, Saravia F, Roig P, et al. Mineralocorticoid treatment upregulates the hypothalamic vasopressinergic system of spontaneously hypertensive rats[J]. Neuroendocrinology, 2004, 80(2):100-110.
    [73]
    Wigger A, Sanchez M M, Mathys K C, et al. Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin[J]. Neuropsychopharmacology, 2004, 29(1):1-14.
    [74]
    Besedovsky H O, del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses[J]. Endocr Rev, 1996, 17(1):64-102.
    [75]
    Hayley S, Poulter M O, Merali Z, et al. The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity[J]. Neuroscience, 2005, 135(3):659-678.
    [76]
    Huitinga I, van der Cammen M, Salm L, et al. IL-1beta immunoreactive neurons in the human hypothalamus: reduced numbers in multiple sclerosis[J]. J Neuroimmunol, 2000, 107(1):8-20.
    [77]
    Kuno R, Yoshida Y, Nitta A, et al. The role of TNF-alpha and its receptors in the production of NGF and GDNF by astrocytes[J]. Brain Res, 2006, 1 116(1):12-18.
    [78]
    Himmerich H, Binder E B, Kunzel H E, et al. Successful antidepressant therapy restores the disturbed interplay between TNF-alpha system and HPA axis[J]. Biol Psychiatry, 2006, 60(8):882-888.
    [79]
    OBrien S M, Scott L V, Dinan T G. Cytokines: abnormalities in major depression and implications for pharmacological treatment[J]. Hum Psychopharmacol, 2004, 19(6):397-403.

    Article Metrics

    Article views (633) PDF downloads(504)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return