[1] |
Goeppert A, Czaun M, Jones J P, et al. Recycling of carbon dioxide to methanol and derived products – closing the loop. Chemical Society Reviews, 2014, 43 (23): 7995–8048. doi: 10.1039/C4CS00122B
|
[2] |
Kong T, Jiang Y, Xiong Y. Photocatalytic CO2 conversion: What can we learn from conventional CO x hydrogenation. Chemical Society Reviews, 2020, 49 (18): 6579–6591. doi: 10.1039/C9CS00920E
|
[3] |
Meinshausen M, Meinshausen N, Hare W, et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature, 2009, 458: 1158–1162. doi: 10.1038/nature08017
|
[4] |
Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 2010, 3 (1): 43–81. doi: 10.1039/B912904A
|
[5] |
Jiang Z, Sun H, Wang T, et al. Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction. Energy & Environmental Science, 2018, 11 (9): 2382–2389. doi: 10.1039/C8EE01781F
|
[6] |
Fang S, Rahaman M, Bharti J, et al. Photocatalytic CO2 reduction. Nature Reviews Methods Primers, 2023, 3: 61. doi: 10.1038/s43586-023-00243-w
|
[7] |
Gong E, Ali S, Hiragond C B, et al. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy & Environmental Science, 2022, 15 (3): 880–937. doi: 10.1039/D1EE02714J
|
[8] |
He Y X, Yin L, Yuan N N, et al. Adsorption and activation, active site and reaction pathway of photocatalytic CO2 reduction: A review. Chemical Engineering Journal, 2024, 481: 148754. doi: 10.1016/j.cej.2024.148754
|
[9] |
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131 (17): 6050–6051. doi: 10.1021/ja809598r
|
[10] |
Hou Y, Aydin E, De Bastiani M, et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367 (6482): 1135–1140. doi: 10.1126/science.aaz3691
|
[11] |
Peng J, Kremer F, Walter D, et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 2022, 601: 573–578. doi: 10.1038/s41586-021-04216-5
|
[12] |
San Martin J, Dang N, Raulerson E, et al. Perovskite photocatalytic CO2 reduction or photoredox organic transformation. Angewandte Chemie International Edition, 2022, 61 (39): e202205572. doi: 10.1002/anie.202205572
|
[13] |
Kim T H, Cho K, Lee S H, et al. Spin polarization in Fe-doped CsPbBr3 perovskite nanocrystals for enhancing photocatalytic CO2 reduction. Chemical Engineering Journal, 2024, 492: 152095. doi: 10.1016/j.cej.2024.152095
|
[14] |
Guo S N, Wang D, Wang J X. ZIF-8@CsPbBr3 nanocrystals formed by conversion of Pb to CsPbBr3 in bimetallic MOFs for enhanced photocatalytic CO2 reduction. Small Methods, 2024, 8 (10): 2301508. doi: 10.1002/smtd.202301508
|
[15] |
Jiang Y, Chen H Y, Li J Y, et al. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Advanced Functional Materials, 2020, 30 (50): 2004293. doi: 10.1002/adfm.202004293
|
[16] |
Xu Y F, Yang M Z, Chen B X, et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. Journal of the American Chemical Society, 2017, 139 (16): 5660–5663. doi: 10.1021/jacs.7b00489
|
[17] |
Li Z J, Hofman E, Li J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Advanced Functional Materials, 2018, 28 (1): 1704288. doi: 10.1002/adfm.201704288
|
[18] |
Ou M, Tu W, Yin S, et al. , Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angewandte Chemie International Edition, 2018, 57 (41): 13570–13574. doi: 10.1002/anie.201808930
|
[19] |
Jiang Y, Liao J F, Chen H Y, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem, 2020, 6 (3): 766–780. doi: 10.1016/j.chempr.2020.01.005
|
[20] |
Sun Q M, Xu J J, Tao F F, et al. Boosted inner surface charge transfer in perovskite nanodots@mesoporous titania frameworks for efficient and selective photocatalytic CO2 reduction to methane. Angewandte Chemie International Edition, 2022, 61 (20): e202200872. doi: 10.1002/anie.202200872
|
[21] |
Wang J C, Wang J, Li N Y, et al. Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2020, 12 (28): 31477–31485. doi: 10.1021/acsami.0c08152
|
[22] |
Wang Q S, Yuan Y C, Li C F, et al. Research progress on photocatalytic CO2 reduction based on perovskite oxides. Small, 2023, 19 (38): 2301892. doi: 10.1002/smll.202301892
|
[23] |
Cheng S, Zhao S D, Xing B L, et al. Facile one-pot green synthesis of magnetic separation photocatalyst-adsorbent and its application. Journal of Water Process Engineering, 2022, 47: 102802. doi: 10.1016/j.jwpe.2022.102802
|
[24] |
Wang X D, Huang Y H, Liao J F, et al. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. Journal of the American Chemical Society, 2019, 141 (34): 13434–13441. doi: 10.1021/jacs.9b04482
|
[25] |
Xu F Y, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nature Communications, 2020, 11: 4613. doi: 10.1038/s41467-020-18350-7
|
[26] |
Wu J K, Li Q F, Xue G B, et al. Preparation of single-crystalline heterojunctions for organic electronics. Advanced Materials, 2017, 29 (14): 1606101. doi: 10.1002/adma.201606101
|
[27] |
Wang Y, Li J Y, Zhou Y, et al. Interfacial defect mediated charge carrier trapping and recombination dynamics in TiO2-based nanoheterojunctions. Journal of Alloys and Compounds, 2021, 872: 159592. doi: 10.1016/j.jallcom.2021.159592
|
[28] |
Cho J Y, Kim S, Nandi R, et al. Achieving over 4% efficiency for SnS/CdS thin-film solar cells by improving the heterojunction interface quality. Journal of Materials Chemistry A, 2020, 8 (39): 20658–20665. doi: 10.1039/D0TA06937J
|
[29] |
Frechette L B, Dellago C, Geissler P L. Consequences of lattice mismatch for phase equilibrium in heterostructured solids. Physical Review Letters, 2019, 123 (13): 135701. doi: 10.1103/PhysRevLett.123.135701
|
[30] |
Pan H P, Jiang X X, Wang X K, et al. Effective magnetic field regulation of the radical pair spin states in electrocatalytic CO2 reduction. The Journal of Physical Chemistry Letters, 2020, 11 (1): 48–53. doi: 10.1021/acs.jpclett.9b03146
|
[31] |
Pan L, Ai M H, Huang C Y, et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nature Communications, 2020, 11: 418. doi: 10.1038/s41467-020-14333-w
|
[32] |
Dhanalakshmi R, Muneeswaran M, Vanga P R, et al. Enhanced photocatalytic activity of hydrothermally grown BiFeO3 nanostructures and role of catalyst recyclability in photocatalysis based on magnetic framework. Applied Physics A, 2015, 122 (1): 13. doi: 10.1007/s00339-015-9527-z
|
[33] |
Gao W Q, Lu J B, Zhang S, et al. Suppressing photoinduced charge recombination via the Lorentz force in a photocatalytic system. Advanced Science, 2019, 6 (18): 1901244. doi: 10.1002/advs.201901244
|
[34] |
Li F, Cheng L, Fan J J, et al. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: a new insight and perspective. Journal of Materials Chemistry A, 2021, 9 (42): 23765–23782. doi: 10.1039/D1TA06899G
|
[35] |
Kodaimati M S, Gao R, Root S E, et al. Magnetic fields enhance mass transport during electrocatalytic reduction of CO2. Chem Catalysis, 2022, 2 (4): 797–815. doi: 10.1016/j.checat.2022.01.023
|
[36] |
Zhong S Y, Guo X L, Zhou A, et al. Fundamentals and recent progress in magnetic field assisted CO2 capture and conversion. Small, 2024, 20 (5): 2305533. doi: 10.1002/smll.202305533
|
[37] |
He M L, Cheng Y Z, Shen L L, et al. Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs. Applied Surface Science, 2018, 448: 400–406. doi: 10.1016/j.apsusc.2018.04.098
|
[38] |
Zhang R, Chen G, Liu H Y, et al. Synergetic effects of the co-doping transition metal ions and the silica-shell coating for enhancing the photoluminescence and stability of Mn:CsPbCl3 nanocrystals and their application. Optical Materials, 2023, 135: 113308. doi: 10.1016/j.optmat.2022.113308
|
[39] |
Yu H Q, Gao X, Huang C C, et al. CsPbCl3 and Mn:CsPbCl3 perovskite nanocubes/nanorods as a prospective cathode material for LIB application. Journal of Materials Science: Materials in Electronics, 2023, 34 (21): 1582. doi: 10.1007/s10854-023-10998-3
|
[40] |
Cao Z, Li J, Wang L, et al. Enhancing luminescence of intrinsic and Mn doped CsPbCl3 perovskite nanocrystals through Co2+ doping. Materials Research Bulletin, 2020, 121: 110608. doi: 10.1016/j.materresbull.2019.110608
|
[41] |
Bagus P S, Nelin C J, Brundle C R, et al. Main and satellite features in the Ni 2p XPS of NiO. Inorganic Chemistry, 2022, 61 (45): 18077–18094. doi: 10.1021/acs.inorgchem.2c02549
|
[42] |
Sakamoto K, Hayashi F, Sato K, et al. XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3. Applied Surface Science, 2020, 526: 146729. doi: 10.1016/j.apsusc.2020.146729
|
[43] |
Yu L C, Wei Y C, Lei Y C, et al. Achieving intrinsic dual-band excitonic luminescence from a single three-dimensional perovskite nanoparticle through Ni2+-mediated halide anion exchange. CCS Chemistry, 2024, 6 (2): 415–426. doi: 10.31635/ccschem.023.202302845
|
[44] |
Zhang R, Yuan Y X, Zhang J F, et al. Improving the Mn2+ emission and stability of CsPb(Cl/Br)3 nanocrystals by Ni2+ doping in ambient air. Journal of Materials Science, 2021, 56 (12): 7494–7507. doi: 10.1007/s10853-021-05779-4
|
[45] |
Mondal N, De A, Samanta A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals. ACS Energy Letters, 2019, 4 (1): 32–39. doi: 10.1021/acsenergylett.8b01909
|
[46] |
Pan G C, Bai X, Xu W, et al. Bright blue light emission of Ni2+ ion-doped CsPbCl xBr3– x perovskite quantum dots enabling efficient light-emitting devices. ACS Applied Materials & Interfaces, 2020, 12 (12): 14195–14202. doi: 10.1021/acsami.0c01074
|
[47] |
De A, Mondal N, Samanta A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals. Nanoscale, 2017, 9 (43): 16722–16727. doi: 10.1039/C7NR06745C
|
[48] |
Klein J, Kampermann L, Mockenhaupt B, et al. Limitations of the Tauc plot method. Advanced Functional Materials, 2023, 33 (47): 2304523. doi: 10.1002/adfm.202304523
|
[49] |
De Siena M C, Sommer D E, Creutz S E, et al. Spinodal decomposition during anion exchange in colloidal Mn2+-doped CsPbX3 (X = Cl, Br) perovskite nanocrystals. Chemistry of Materials, 2019, 31 (18): 7711–7722. doi: 10.1021/acs.chemmater.9b02646
|
[50] |
Antonov V N, Bekenov L V, Uba S, et al. Electronic structure and X-ray magnetic circular dichroism in the Ni-Mn-Ga Heusler alloys. Journal of Alloys and Compounds, 2017, 695: 1826–1837. doi: 10.1016/j.jallcom.2016.11.016
|
[51] |
Feng S H, Duan H L, Tan H, et al. Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework. Nature Communications, 2023, 14: 7063. doi: 10.1038/s41467-023-42844-9
|
[52] |
Hu J X, Han Y L, Chi X, et al. Tunable spin-polarized states in graphene on a ferrimagnetic oxide insulator. Advanced Materials, 2024, 36 (8): 2305763. doi: 10.1002/adma.202305763
|
[53] |
Wang Y, Wang S L, Wu Y B, et al. A α-Fe2O3/rGO magnetic photocatalyst: Enhanced photocatalytic performance regulated by magnetic field. Journal of Alloys and Compounds, 2021, 851: 156733. doi: 10.1016/j.jallcom.2020.156733
|
[54] |
Liu D, Huang Y J, Hu J W, et al. Multiscale catalysis under magnetic fields: methodologies, advances, and trends. ChemCatChem, 2022, 14 (24): e202200889. doi: 10.1002/cctc.202200889
|
[55] |
Li X B, Wang W W, Dong F, et al. Recent advances in noncontact external-field-assisted photocatalysis: from fundamentals to applications. ACS Catalysis, 2021, 11 (8): 4739–4769. doi: 10.1021/acscatal.0c05354
|
[56] |
He J, Wang Y, Shi C J, et al. Enhanced performance of a magnetic photocatalyst regulated using a magnetic field. Separation and Purification Technology, 2022, 284: 120263. doi: 10.1016/j.seppur.2021.120263
|
JUSTC-2024-0078 Supporting Information.docx |
Figure 3. (a) Photocatalytic CO2RR product yields of Ni-CsPbCl3 with various Ni doping ratios under conditions without or with an external magnetic field. (b) UV‒visible absorption spectra of Ni-CsPbCl3 with different Ni doping ratios. (c) Relationships between the photocatalytic CO yield and magnetic field intensity for CsPbCl3 and Ni-CsPbCl3 with a nickel doping ratio of 8.0 at%. (d) Changes in the photocatalytic CO yield over time for CsPbCl3 and Ni-CsPbCl3 with a nickel doping ratio of 8.0 at%.
Figure 5. (a) Photogenerated currents for CsPbCl3 and Ni-CsPbCl3 with a Ni doping ratio of 8.0 at%. (b) EPR spectra of CsPbCl3 and Ni-CsPbCl3 with a Ni doping ratio of 8.0 at%. (c) XMCD spectra of Ni-CsPbCl3 with a Ni doping ratio of 8.0 at%. (d) Schematic diagram illustrating the mechanism of magnetic field-induced CO2RR performance enhancement.
[1] |
Goeppert A, Czaun M, Jones J P, et al. Recycling of carbon dioxide to methanol and derived products – closing the loop. Chemical Society Reviews, 2014, 43 (23): 7995–8048. doi: 10.1039/C4CS00122B
|
[2] |
Kong T, Jiang Y, Xiong Y. Photocatalytic CO2 conversion: What can we learn from conventional CO x hydrogenation. Chemical Society Reviews, 2020, 49 (18): 6579–6591. doi: 10.1039/C9CS00920E
|
[3] |
Meinshausen M, Meinshausen N, Hare W, et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature, 2009, 458: 1158–1162. doi: 10.1038/nature08017
|
[4] |
Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 2010, 3 (1): 43–81. doi: 10.1039/B912904A
|
[5] |
Jiang Z, Sun H, Wang T, et al. Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction. Energy & Environmental Science, 2018, 11 (9): 2382–2389. doi: 10.1039/C8EE01781F
|
[6] |
Fang S, Rahaman M, Bharti J, et al. Photocatalytic CO2 reduction. Nature Reviews Methods Primers, 2023, 3: 61. doi: 10.1038/s43586-023-00243-w
|
[7] |
Gong E, Ali S, Hiragond C B, et al. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy & Environmental Science, 2022, 15 (3): 880–937. doi: 10.1039/D1EE02714J
|
[8] |
He Y X, Yin L, Yuan N N, et al. Adsorption and activation, active site and reaction pathway of photocatalytic CO2 reduction: A review. Chemical Engineering Journal, 2024, 481: 148754. doi: 10.1016/j.cej.2024.148754
|
[9] |
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131 (17): 6050–6051. doi: 10.1021/ja809598r
|
[10] |
Hou Y, Aydin E, De Bastiani M, et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367 (6482): 1135–1140. doi: 10.1126/science.aaz3691
|
[11] |
Peng J, Kremer F, Walter D, et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 2022, 601: 573–578. doi: 10.1038/s41586-021-04216-5
|
[12] |
San Martin J, Dang N, Raulerson E, et al. Perovskite photocatalytic CO2 reduction or photoredox organic transformation. Angewandte Chemie International Edition, 2022, 61 (39): e202205572. doi: 10.1002/anie.202205572
|
[13] |
Kim T H, Cho K, Lee S H, et al. Spin polarization in Fe-doped CsPbBr3 perovskite nanocrystals for enhancing photocatalytic CO2 reduction. Chemical Engineering Journal, 2024, 492: 152095. doi: 10.1016/j.cej.2024.152095
|
[14] |
Guo S N, Wang D, Wang J X. ZIF-8@CsPbBr3 nanocrystals formed by conversion of Pb to CsPbBr3 in bimetallic MOFs for enhanced photocatalytic CO2 reduction. Small Methods, 2024, 8 (10): 2301508. doi: 10.1002/smtd.202301508
|
[15] |
Jiang Y, Chen H Y, Li J Y, et al. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Advanced Functional Materials, 2020, 30 (50): 2004293. doi: 10.1002/adfm.202004293
|
[16] |
Xu Y F, Yang M Z, Chen B X, et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. Journal of the American Chemical Society, 2017, 139 (16): 5660–5663. doi: 10.1021/jacs.7b00489
|
[17] |
Li Z J, Hofman E, Li J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Advanced Functional Materials, 2018, 28 (1): 1704288. doi: 10.1002/adfm.201704288
|
[18] |
Ou M, Tu W, Yin S, et al. , Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angewandte Chemie International Edition, 2018, 57 (41): 13570–13574. doi: 10.1002/anie.201808930
|
[19] |
Jiang Y, Liao J F, Chen H Y, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem, 2020, 6 (3): 766–780. doi: 10.1016/j.chempr.2020.01.005
|
[20] |
Sun Q M, Xu J J, Tao F F, et al. Boosted inner surface charge transfer in perovskite nanodots@mesoporous titania frameworks for efficient and selective photocatalytic CO2 reduction to methane. Angewandte Chemie International Edition, 2022, 61 (20): e202200872. doi: 10.1002/anie.202200872
|
[21] |
Wang J C, Wang J, Li N Y, et al. Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2020, 12 (28): 31477–31485. doi: 10.1021/acsami.0c08152
|
[22] |
Wang Q S, Yuan Y C, Li C F, et al. Research progress on photocatalytic CO2 reduction based on perovskite oxides. Small, 2023, 19 (38): 2301892. doi: 10.1002/smll.202301892
|
[23] |
Cheng S, Zhao S D, Xing B L, et al. Facile one-pot green synthesis of magnetic separation photocatalyst-adsorbent and its application. Journal of Water Process Engineering, 2022, 47: 102802. doi: 10.1016/j.jwpe.2022.102802
|
[24] |
Wang X D, Huang Y H, Liao J F, et al. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. Journal of the American Chemical Society, 2019, 141 (34): 13434–13441. doi: 10.1021/jacs.9b04482
|
[25] |
Xu F Y, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nature Communications, 2020, 11: 4613. doi: 10.1038/s41467-020-18350-7
|
[26] |
Wu J K, Li Q F, Xue G B, et al. Preparation of single-crystalline heterojunctions for organic electronics. Advanced Materials, 2017, 29 (14): 1606101. doi: 10.1002/adma.201606101
|
[27] |
Wang Y, Li J Y, Zhou Y, et al. Interfacial defect mediated charge carrier trapping and recombination dynamics in TiO2-based nanoheterojunctions. Journal of Alloys and Compounds, 2021, 872: 159592. doi: 10.1016/j.jallcom.2021.159592
|
[28] |
Cho J Y, Kim S, Nandi R, et al. Achieving over 4% efficiency for SnS/CdS thin-film solar cells by improving the heterojunction interface quality. Journal of Materials Chemistry A, 2020, 8 (39): 20658–20665. doi: 10.1039/D0TA06937J
|
[29] |
Frechette L B, Dellago C, Geissler P L. Consequences of lattice mismatch for phase equilibrium in heterostructured solids. Physical Review Letters, 2019, 123 (13): 135701. doi: 10.1103/PhysRevLett.123.135701
|
[30] |
Pan H P, Jiang X X, Wang X K, et al. Effective magnetic field regulation of the radical pair spin states in electrocatalytic CO2 reduction. The Journal of Physical Chemistry Letters, 2020, 11 (1): 48–53. doi: 10.1021/acs.jpclett.9b03146
|
[31] |
Pan L, Ai M H, Huang C Y, et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nature Communications, 2020, 11: 418. doi: 10.1038/s41467-020-14333-w
|
[32] |
Dhanalakshmi R, Muneeswaran M, Vanga P R, et al. Enhanced photocatalytic activity of hydrothermally grown BiFeO3 nanostructures and role of catalyst recyclability in photocatalysis based on magnetic framework. Applied Physics A, 2015, 122 (1): 13. doi: 10.1007/s00339-015-9527-z
|
[33] |
Gao W Q, Lu J B, Zhang S, et al. Suppressing photoinduced charge recombination via the Lorentz force in a photocatalytic system. Advanced Science, 2019, 6 (18): 1901244. doi: 10.1002/advs.201901244
|
[34] |
Li F, Cheng L, Fan J J, et al. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: a new insight and perspective. Journal of Materials Chemistry A, 2021, 9 (42): 23765–23782. doi: 10.1039/D1TA06899G
|
[35] |
Kodaimati M S, Gao R, Root S E, et al. Magnetic fields enhance mass transport during electrocatalytic reduction of CO2. Chem Catalysis, 2022, 2 (4): 797–815. doi: 10.1016/j.checat.2022.01.023
|
[36] |
Zhong S Y, Guo X L, Zhou A, et al. Fundamentals and recent progress in magnetic field assisted CO2 capture and conversion. Small, 2024, 20 (5): 2305533. doi: 10.1002/smll.202305533
|
[37] |
He M L, Cheng Y Z, Shen L L, et al. Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs. Applied Surface Science, 2018, 448: 400–406. doi: 10.1016/j.apsusc.2018.04.098
|
[38] |
Zhang R, Chen G, Liu H Y, et al. Synergetic effects of the co-doping transition metal ions and the silica-shell coating for enhancing the photoluminescence and stability of Mn:CsPbCl3 nanocrystals and their application. Optical Materials, 2023, 135: 113308. doi: 10.1016/j.optmat.2022.113308
|
[39] |
Yu H Q, Gao X, Huang C C, et al. CsPbCl3 and Mn:CsPbCl3 perovskite nanocubes/nanorods as a prospective cathode material for LIB application. Journal of Materials Science: Materials in Electronics, 2023, 34 (21): 1582. doi: 10.1007/s10854-023-10998-3
|
[40] |
Cao Z, Li J, Wang L, et al. Enhancing luminescence of intrinsic and Mn doped CsPbCl3 perovskite nanocrystals through Co2+ doping. Materials Research Bulletin, 2020, 121: 110608. doi: 10.1016/j.materresbull.2019.110608
|
[41] |
Bagus P S, Nelin C J, Brundle C R, et al. Main and satellite features in the Ni 2p XPS of NiO. Inorganic Chemistry, 2022, 61 (45): 18077–18094. doi: 10.1021/acs.inorgchem.2c02549
|
[42] |
Sakamoto K, Hayashi F, Sato K, et al. XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3. Applied Surface Science, 2020, 526: 146729. doi: 10.1016/j.apsusc.2020.146729
|
[43] |
Yu L C, Wei Y C, Lei Y C, et al. Achieving intrinsic dual-band excitonic luminescence from a single three-dimensional perovskite nanoparticle through Ni2+-mediated halide anion exchange. CCS Chemistry, 2024, 6 (2): 415–426. doi: 10.31635/ccschem.023.202302845
|
[44] |
Zhang R, Yuan Y X, Zhang J F, et al. Improving the Mn2+ emission and stability of CsPb(Cl/Br)3 nanocrystals by Ni2+ doping in ambient air. Journal of Materials Science, 2021, 56 (12): 7494–7507. doi: 10.1007/s10853-021-05779-4
|
[45] |
Mondal N, De A, Samanta A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals. ACS Energy Letters, 2019, 4 (1): 32–39. doi: 10.1021/acsenergylett.8b01909
|
[46] |
Pan G C, Bai X, Xu W, et al. Bright blue light emission of Ni2+ ion-doped CsPbCl xBr3– x perovskite quantum dots enabling efficient light-emitting devices. ACS Applied Materials & Interfaces, 2020, 12 (12): 14195–14202. doi: 10.1021/acsami.0c01074
|
[47] |
De A, Mondal N, Samanta A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals. Nanoscale, 2017, 9 (43): 16722–16727. doi: 10.1039/C7NR06745C
|
[48] |
Klein J, Kampermann L, Mockenhaupt B, et al. Limitations of the Tauc plot method. Advanced Functional Materials, 2023, 33 (47): 2304523. doi: 10.1002/adfm.202304523
|
[49] |
De Siena M C, Sommer D E, Creutz S E, et al. Spinodal decomposition during anion exchange in colloidal Mn2+-doped CsPbX3 (X = Cl, Br) perovskite nanocrystals. Chemistry of Materials, 2019, 31 (18): 7711–7722. doi: 10.1021/acs.chemmater.9b02646
|
[50] |
Antonov V N, Bekenov L V, Uba S, et al. Electronic structure and X-ray magnetic circular dichroism in the Ni-Mn-Ga Heusler alloys. Journal of Alloys and Compounds, 2017, 695: 1826–1837. doi: 10.1016/j.jallcom.2016.11.016
|
[51] |
Feng S H, Duan H L, Tan H, et al. Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework. Nature Communications, 2023, 14: 7063. doi: 10.1038/s41467-023-42844-9
|
[52] |
Hu J X, Han Y L, Chi X, et al. Tunable spin-polarized states in graphene on a ferrimagnetic oxide insulator. Advanced Materials, 2024, 36 (8): 2305763. doi: 10.1002/adma.202305763
|
[53] |
Wang Y, Wang S L, Wu Y B, et al. A α-Fe2O3/rGO magnetic photocatalyst: Enhanced photocatalytic performance regulated by magnetic field. Journal of Alloys and Compounds, 2021, 851: 156733. doi: 10.1016/j.jallcom.2020.156733
|
[54] |
Liu D, Huang Y J, Hu J W, et al. Multiscale catalysis under magnetic fields: methodologies, advances, and trends. ChemCatChem, 2022, 14 (24): e202200889. doi: 10.1002/cctc.202200889
|
[55] |
Li X B, Wang W W, Dong F, et al. Recent advances in noncontact external-field-assisted photocatalysis: from fundamentals to applications. ACS Catalysis, 2021, 11 (8): 4739–4769. doi: 10.1021/acscatal.0c05354
|
[56] |
He J, Wang Y, Shi C J, et al. Enhanced performance of a magnetic photocatalyst regulated using a magnetic field. Separation and Purification Technology, 2022, 284: 120263. doi: 10.1016/j.seppur.2021.120263
|