[1] |
Sklar M. Fonctions de repartition an dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris, 1959, 8: 229–231.
|
[2] |
Nelsen R B. An Introduction to Copulas. New York: Springer, 1999: 414–422.
|
[3] |
Whelan N. Sampling from Archimedean copulas. Quantitative Finance, 2004, 4 (3): 339. doi: 10.1088/1469-7688/4/3/009
|
[4] |
Bollerslev T. Generalized autoregressive conditional hetero-skedasticity. Journal of Econometrics, 1986, 31: 307–327. doi: 10.1016/0304-4076(86)90063-1
|
[5] |
Liu Y, Luger R. Efficient estimation of copula-GARCH models. Computational Statistics & Data Analysis, 2009, 53 (6): 2284–2297. doi: 10.1016/j.csda.2008.01.018
|
[6] |
Ghorbel A, Hamma W, Jarboui A. Dependence between oil and commodities markets using time-varying Archimedean copulas and effectiveness of hedging strategies. Journal of Applied Statistics, 2017, 44 (9): 1509–1542. doi: 10.1080/02664763.2016.1155107
|
[7] |
Carvalho M D M, Sáfadi T. Risk analysis in the Brazilian stock market: copula-APARCH modeling for value-at-risk. Journal of Applied Statistics, 2022, 49: 1598–1610. doi: 10.1080/02664763.2020.1865883
|
[8] |
Chen X, Fan Y. Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification. Journal of Econometrics, 2006, 135: 125–154. doi: 10.1016/j.jeconom.2005.07.027
|
[9] |
Patton A J. Modelling asymmetric exchange rate dependence. International Economic Review, 2006, 47 (2): 527–556. doi: 10.1111/j.1468-2354.2006.00387.x
|
[10] |
Giulio G, Ergün A T. Systemic risk measurement: Multivariate GARCH estimation of CoVaR. Journal of Banking and Finance, 2013, 37 (8): 3169–3180. doi: 10.1016/j.jbankfin.2013.02.027
|
[11] |
Joe H. Multivariate Models and Multivariate Dependence Concepts. London: Chapman & Hall, 1997.
|
[12] |
Chen X, Fan Y. Estimation of copula-based semiparametric time series models. Journal of Econometrics, 2006, 130 (2): 307–335. doi: 10.1016/j.jeconom.2005.03.004
|
[13] |
Beare B K. Copulas and temporal dependence. Econometrica, 2010, 78: 395–410. doi: 10.3982/ECTA8152
|
[14] |
Zhao Z, Shi P, Zhang Z. Modeling multivariate time series with copula-linked univariate D-vines. Journal of Business & Economic Statistics, 2021, 40 (2): 690–704. doi: 10.1080/07350015.2020.1859381
|
[15] |
Joe H. Families of m-variate distributions with given margins and m(m–1)/2 bivariate dependence parameters. IMS Lecture Notes – Monograph Series, 1996, 28: 120–141. doi: 10.1214/lnms/1215452614
|
[16] |
Bedford T J, Cooke R M. Monte Carlo simulation of vine dependent random variables for applications in uncertainty analysis. In: Proceedings ESREL 2001. Torino: Politecnico di Torino, 2001: 863–870.
|
[17] |
Bedford T J, Cooke R M. Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial Intelligence, 2001, 32: 245–268. doi: 10.1023/A:1016725902970
|
[18] |
Aas K, Czado C, Frigessi A, et al. Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 2009, 44: 182–198. doi: 10.1016/j.insmatheco.2007.02.001
|
[19] |
Bladt M, McNeil A J. Time series copula models using d-vines and v-transforms. Econometrics and Statistics, 2021, 24: 27–48. doi: 10.1016/j.ecosta.2021.07.004
|
[20] |
Brechmann E C, Czado C. COPAR—multivariate time series modeling using the copula autoregressive model. Applied Stochastic Models in Business and Industry, 2015, 31: 495–514. doi: 10.1002/asmb.2043
|
[21] |
Smith M S. Copula modelling of dependence in multivariate time series. International Journal of Forecasting, 2015, 31 (3): 815–833. doi: 10.1016/j.ijforecast.2014.04.003
|
[22] |
Beare B K, Seo J. Vine copula specifications for stationary multivariate Markov chains. Journal of Time Series Analysis, 2015, 36: 228–246. doi: 10.1111/jtsa.12103
|
[23] |
Nagler T, Krüger D, Min A. Stationary vine copula models for multivariate time series. Journal of Econometrics, 2022, 277 (2): 305–324. doi: 10.1016/j.jeconom.2021.11.015
|
[24] |
Engle R F. Dynamic conditional correlation. Journal of Business and Economic Statistics, 2002, 20: 339–350. doi: 10.1198/073500102288618487
|
[25] |
Fioruci J A, Ehlers R S, Andrade M G. Bayesian multivariate GARCH models with dynamic correlations and asymmetric error distributions. Journal of Applied Statistics, 2014, 41 (2): 320–331. doi: 10.1080/02664763.2013.839635
|
[26] |
Gong J, Li Y, Peng L, et al. Estimation of extreme quantiles for functions of dependent random variables. Journal of the Royal Statistical Society: Series B, 2015, 77 (5): 1001–1024. doi: 10.1111/rssb.12103
|
[27] |
Adrian T, Brunnermeier M K. CoVaR. American Economic Review, 2016, 106: 1705–1741. doi: 10.1257/aer.20120555
|
[28] |
Bianchi M L, De Luca G, Rivieccio G. Non-Gaussian models for CoVaR estimation. International Journal of Forecasting, 2023, 39 (1): 391–404. doi: 10.1016/j.ijforecast.2021.12.002
|
[29] |
Creal D, Koopman S J, Lucas A. Generalized autoregressive score models with applications. Journal of Applied Econometrics, 2013, 28 (5): 777–795. doi: 10.1002/jae.1279
|
[30] |
Joe H. Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analysis, 2005, 94 (2): 401–419. doi: 10.1016/j.jmva.2004.06.003
|
[31] |
Tsukahara H. Semiparametric estimation in copula model. Canadian Journal of Statistics, 2005, 33 (3): 357–375. doi: 10.1002/cjs.5540330304
|
[32] |
Qiang J, Liu B Y, Ying F. Risk dependence of CoVaR and structural change between oil prices and exchange rates: A time-varying copula model. Energy Economics, 2019, 77: 80–92. doi: 10.1016/j.eneco.2018.07.012
|
[33] |
Nelson D B. Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 1991, 59 (2): 347–370. doi: 10.2307/2938260
|
[34] |
Glosten L R, Jagannathan R, Runkle D E. On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 1993, 48 (5): 1779–1801. doi: 10.1111/j.1540-6261.1993.tb05128.x
|
[35] |
Kupiec P H. Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives, 1995, 95 (24): 73–84. doi: 10.3905/jod.1995.407942
|
[36] |
Christoffersen P F. Evaluating interval forecasts. International Economic Review, 1998, 39 (4): 841–862. doi: 10.2307/2527341
|
[37] |
Vaart A W, Wellner J A. Weak Convergence and Empirical Processes. New York: Springer, 1996: 16–28.
|
[38] |
Doukhan P, Massart P, Rio E. Invariance principles for absolutely regular empirical processes. Annales de l’Institut Henri Poincar, 1995, 31 (2): 393–427.
|
[1] |
Sklar M. Fonctions de repartition an dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris, 1959, 8: 229–231.
|
[2] |
Nelsen R B. An Introduction to Copulas. New York: Springer, 1999: 414–422.
|
[3] |
Whelan N. Sampling from Archimedean copulas. Quantitative Finance, 2004, 4 (3): 339. doi: 10.1088/1469-7688/4/3/009
|
[4] |
Bollerslev T. Generalized autoregressive conditional hetero-skedasticity. Journal of Econometrics, 1986, 31: 307–327. doi: 10.1016/0304-4076(86)90063-1
|
[5] |
Liu Y, Luger R. Efficient estimation of copula-GARCH models. Computational Statistics & Data Analysis, 2009, 53 (6): 2284–2297. doi: 10.1016/j.csda.2008.01.018
|
[6] |
Ghorbel A, Hamma W, Jarboui A. Dependence between oil and commodities markets using time-varying Archimedean copulas and effectiveness of hedging strategies. Journal of Applied Statistics, 2017, 44 (9): 1509–1542. doi: 10.1080/02664763.2016.1155107
|
[7] |
Carvalho M D M, Sáfadi T. Risk analysis in the Brazilian stock market: copula-APARCH modeling for value-at-risk. Journal of Applied Statistics, 2022, 49: 1598–1610. doi: 10.1080/02664763.2020.1865883
|
[8] |
Chen X, Fan Y. Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification. Journal of Econometrics, 2006, 135: 125–154. doi: 10.1016/j.jeconom.2005.07.027
|
[9] |
Patton A J. Modelling asymmetric exchange rate dependence. International Economic Review, 2006, 47 (2): 527–556. doi: 10.1111/j.1468-2354.2006.00387.x
|
[10] |
Giulio G, Ergün A T. Systemic risk measurement: Multivariate GARCH estimation of CoVaR. Journal of Banking and Finance, 2013, 37 (8): 3169–3180. doi: 10.1016/j.jbankfin.2013.02.027
|
[11] |
Joe H. Multivariate Models and Multivariate Dependence Concepts. London: Chapman & Hall, 1997.
|
[12] |
Chen X, Fan Y. Estimation of copula-based semiparametric time series models. Journal of Econometrics, 2006, 130 (2): 307–335. doi: 10.1016/j.jeconom.2005.03.004
|
[13] |
Beare B K. Copulas and temporal dependence. Econometrica, 2010, 78: 395–410. doi: 10.3982/ECTA8152
|
[14] |
Zhao Z, Shi P, Zhang Z. Modeling multivariate time series with copula-linked univariate D-vines. Journal of Business & Economic Statistics, 2021, 40 (2): 690–704. doi: 10.1080/07350015.2020.1859381
|
[15] |
Joe H. Families of m-variate distributions with given margins and m(m–1)/2 bivariate dependence parameters. IMS Lecture Notes – Monograph Series, 1996, 28: 120–141. doi: 10.1214/lnms/1215452614
|
[16] |
Bedford T J, Cooke R M. Monte Carlo simulation of vine dependent random variables for applications in uncertainty analysis. In: Proceedings ESREL 2001. Torino: Politecnico di Torino, 2001: 863–870.
|
[17] |
Bedford T J, Cooke R M. Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial Intelligence, 2001, 32: 245–268. doi: 10.1023/A:1016725902970
|
[18] |
Aas K, Czado C, Frigessi A, et al. Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 2009, 44: 182–198. doi: 10.1016/j.insmatheco.2007.02.001
|
[19] |
Bladt M, McNeil A J. Time series copula models using d-vines and v-transforms. Econometrics and Statistics, 2021, 24: 27–48. doi: 10.1016/j.ecosta.2021.07.004
|
[20] |
Brechmann E C, Czado C. COPAR—multivariate time series modeling using the copula autoregressive model. Applied Stochastic Models in Business and Industry, 2015, 31: 495–514. doi: 10.1002/asmb.2043
|
[21] |
Smith M S. Copula modelling of dependence in multivariate time series. International Journal of Forecasting, 2015, 31 (3): 815–833. doi: 10.1016/j.ijforecast.2014.04.003
|
[22] |
Beare B K, Seo J. Vine copula specifications for stationary multivariate Markov chains. Journal of Time Series Analysis, 2015, 36: 228–246. doi: 10.1111/jtsa.12103
|
[23] |
Nagler T, Krüger D, Min A. Stationary vine copula models for multivariate time series. Journal of Econometrics, 2022, 277 (2): 305–324. doi: 10.1016/j.jeconom.2021.11.015
|
[24] |
Engle R F. Dynamic conditional correlation. Journal of Business and Economic Statistics, 2002, 20: 339–350. doi: 10.1198/073500102288618487
|
[25] |
Fioruci J A, Ehlers R S, Andrade M G. Bayesian multivariate GARCH models with dynamic correlations and asymmetric error distributions. Journal of Applied Statistics, 2014, 41 (2): 320–331. doi: 10.1080/02664763.2013.839635
|
[26] |
Gong J, Li Y, Peng L, et al. Estimation of extreme quantiles for functions of dependent random variables. Journal of the Royal Statistical Society: Series B, 2015, 77 (5): 1001–1024. doi: 10.1111/rssb.12103
|
[27] |
Adrian T, Brunnermeier M K. CoVaR. American Economic Review, 2016, 106: 1705–1741. doi: 10.1257/aer.20120555
|
[28] |
Bianchi M L, De Luca G, Rivieccio G. Non-Gaussian models for CoVaR estimation. International Journal of Forecasting, 2023, 39 (1): 391–404. doi: 10.1016/j.ijforecast.2021.12.002
|
[29] |
Creal D, Koopman S J, Lucas A. Generalized autoregressive score models with applications. Journal of Applied Econometrics, 2013, 28 (5): 777–795. doi: 10.1002/jae.1279
|
[30] |
Joe H. Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analysis, 2005, 94 (2): 401–419. doi: 10.1016/j.jmva.2004.06.003
|
[31] |
Tsukahara H. Semiparametric estimation in copula model. Canadian Journal of Statistics, 2005, 33 (3): 357–375. doi: 10.1002/cjs.5540330304
|
[32] |
Qiang J, Liu B Y, Ying F. Risk dependence of CoVaR and structural change between oil prices and exchange rates: A time-varying copula model. Energy Economics, 2019, 77: 80–92. doi: 10.1016/j.eneco.2018.07.012
|
[33] |
Nelson D B. Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 1991, 59 (2): 347–370. doi: 10.2307/2938260
|
[34] |
Glosten L R, Jagannathan R, Runkle D E. On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 1993, 48 (5): 1779–1801. doi: 10.1111/j.1540-6261.1993.tb05128.x
|
[35] |
Kupiec P H. Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives, 1995, 95 (24): 73–84. doi: 10.3905/jod.1995.407942
|
[36] |
Christoffersen P F. Evaluating interval forecasts. International Economic Review, 1998, 39 (4): 841–862. doi: 10.2307/2527341
|
[37] |
Vaart A W, Wellner J A. Weak Convergence and Empirical Processes. New York: Springer, 1996: 16–28.
|
[38] |
Doukhan P, Massart P, Rio E. Invariance principles for absolutely regular empirical processes. Annales de l’Institut Henri Poincar, 1995, 31 (2): 393–427.
|