[1] |
Goddard K A, Tromp G, Romero R, et al. Candidate-gene association study of mothers with pre-eclampsia, and their infants, analyzing 775 SNPs in 190 genes. Human Heredity, 2007, 63 (1): 1–16. doi: 10.1159/000097926
|
[2] |
Kanayama N, Takahashi K, Matsuura T, et al. Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Molecular Human Reproduction, 2002, 8 (12): 1129–1135. doi: 10.1093/molehr/8.12.1129
|
[3] |
Saftlas A F, Beydoun H, Triche E. Immunogenetic determinants of preeclampsia and related pregnancy disorders: A systematic review. Obstetrics and Gynecology, 2005, 106 (1): 162–172. doi: 10.1097/01.AOG.0000167389.97019.37
|
[4] |
Wangler M F, Chang A S, Moley K H, et al. Factors associated with preterm delivery in mothers of children with Beckwith-Wiedemann syndrome: A case cohort study from the BWS registry. American Journal of Medical Genetics Part A, 2005, 134 (2): 187–191. doi: 10.1002/ajmg.a.30595
|
[5] |
Goldenberg R L, Culhane J F, Iams J D, et al. Epidemiology and causes of preterm birth. The Lancet, 2008, 371 (9606): 75–84. doi: 10.1016/S0140-6736(08)60074-4
|
[6] |
Zhang G, Feenstra B, Bacelis J, et al. Genetic associations with gestational duration and spontaneous preterm birth. The New England Journal of Medicine, 2017, 377 (12): 1156–1167. doi: 10.1056/NEJMoa1612665
|
[7] |
Hong X, Hao K, Ji H, et al. Genome-wide approach identifies a novel gene-maternal pre-pregnancy BMI interaction on preterm birth. Nature Communications, 2017, 8 (1): 15608. doi: 10.1038/ncomms15608
|
[8] |
Chen J, Zheng H, Wilson M L. Likelihood ratio tests for maternal and fetal genetic effects on obstetric complications. Genetic Epidemiology, 2009, 33 (6): 526–538. doi: 10.1002/gepi.20405
|
[9] |
Fu W, Li M, Sun K, et al. Testing maternal-fetal genotype incompatibility with mother-offspring pair data. Journal of Proteomics and Genomics Research, 2013, 1 (2): 40–56. doi: 10.14302/issn.2326-0793.jpgr-12-160
|
[10] |
Chen J, Lin D, Hochner H. Semiparametric maximum likelihood methods for analyzing genetic and environmental effects with case-control mother-child pair data. Biometrics, 2012, 68 (3): 869–877. doi: 10.1111/j.1541-0420.2011.01728.x
|
[11] |
Lin D, Weinberg C R, Feng R, et al. A multi-locus likelihood method for assessing parent-of-origin effects using case-control mother-child pairs. Genetic Epidemiology, 2013, 37 (2): 152–162. doi: 10.1002/gepi.21700
|
[12] |
Prentice R L, Pyke R. Logistic disease incidence models and case-control studies. Biometrika, 1979, 66 (3): 403–411. doi: 10.1093/biomet/66.3.403
|
[13] |
Shi M, Umbach D M, Vermeulen S H, et al. Making the most of case-mother/control-mother studies. American Journal of Epidemiology, 2008, 168 (5): 541–547. doi: 10.1093/aje/kwn149
|
[14] |
Zhang H, Mukherjee B, Arthur V, et al. An efficient and computationally robust statistical method for analyzing case-control mother-offspring pair genetic association studies. Annals of Applied Statics, 2020, 14 (2): 560–584. doi: 10.1214/19-AOAS1298
|
[15] |
Chen Y H, Chatterjee N, Carroll R J. Shrinkage estimators for robust and efficient inference in haplotype-based case-control studies. Journal of the American Statistical Association, 2009, 104 (485): 220–233. doi: 10.1198/jasa.2009.0104
|
[16] |
Owen A B. Empirical Likelihood. New York: Chapman and Hall/ CRC, 2001.
|
[17] |
Zhang H, Chatterjee N, Rader D, et al. Adjustment of nonconfounding covariates in case-control genetic association studies. Annals of Applied Statistics, 2018, 12 (1): 200–221. doi: 10.1214/17-AOAS1065
|
[18] |
Casella G, Berger R L. Statistical Inference. 2nd edition. Boston, MA: Cengage Learning, 2001.
|
[19] |
Mukherjee B, Chatterjee N. Exploiting gene-environment independence for analysis of case-control studies: An empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics, 2008, 64 (3): 685–694. doi: 10.1111/j.1541-0420.2007.00953.x
|
[20] |
Zhang K, Zhang H, Hochner H, et al. Covariate adjusted inference of parent-of-origin effects using case-control mother-child paired multilocus genotype data. Genetic Epidemiology, 2021, 45 (8): 830–847. doi: 10.1002/gepi.22428
|
[21] |
Engel S A M, Erichsen H C, Savitz D A, et al. Risk of spontaneous preterm birth is associated with common proinflammatory cytokine polymorphisms. Epidemiology, 2005, 16 (4): 469–477. doi: 10.1097/01.ede.0000164539.09250.31
|
[22] |
Frey H A, Stout M J, Pearson L N, et al. Genetic variation associated with preterm birth in African-American women. American Journal of Obstetrics and Gynecology, 2016, 215 (2): 235.e1–235.e8. doi: 10.1016/j.ajog.2016.03.008
|
[23] |
Haataja R, Karjalainen M K, Luukkonen A, et al. Mapping a new spontaneous preterm birth susceptibility gene, IGF1R, using linkage, haplotype sharing, and association analysis. PLoS Genetics, 2011, 7 (2): e1001293. doi: 10.1371/journal.pgen.1001293
|
[24] |
Menon R, Velez D R, Simhan H, et al. Multilocus interactions at maternal tumor necrosis factor-α, tumor necrosis factor receptors, interleukin-6 and interleukin-6 receptor genes predict spontaneous preterm labor in European-American women. American Journal of Obstetrics and Gynecology, 2006, 194 (6): 1616–1624. doi: 10.1016/j.ajog.2006.03.059
|
[25] |
Hendler I, Goldenberg R L, Mercer B M, et al. The preterm prediction study: Association between maternal body mass index and spontaneous and indicated preterm birth. American Journal of Obstetrics and Gynecology, 2005, 192 (3): 882–886. doi: 10.1016/j.ajog.2004.09.021
|
[26] |
Frayling T M, Timpson N J, Weedon M N, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 2007, 316 (5826): 889–894. doi: 10.1126/science.1141634
|
[27] |
Purcell S, Neale B, Todd-Brown K, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81 (3): 559–575. doi: 10.1086/519795
|
[28] |
Hamilton B E, Martin J A, Ventura S J. Births: Preliminary data for 2005. National Vital Statistics Reports, 2006, 55 (11): 1–18.
|
[29] |
Slattery M M, Morrison J J. Preterm delivery. The Lancet, 2002, 360 (9344): 1489–1497. doi: 10.1016/S0140-6736(02)11476-0
|
[30] |
Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nature Genetics, 2008, 40 (6): 695–701. doi: 10.1038/ng.f.136
|
[31] |
Lee S, Abecasis G R, Boehnke M, et al. Rare-variant association analysis: Study designs and statistical tests. American Journal of Human Genetics, 2014, 95 (1): 5–23. doi: 10.1016/j.ajhg.2014.06.009
|
[32] |
Schork N J, Murray S S, Frazer K A, et al. Common vs. rare allele hypotheses for complex diseases. Current Opinion in Genetics and Development, 2009, 19 (3): 212–219. doi: 10.1016/j.gde.2009.04.010
|
[33] |
Ionita-Laza I, Lee S, Makarov V, et al. Family-based association tests for sequence data, and comparisons with population-based association tests. European Journal of Human Genetics, 2013, 21 (10): 1158–1162. doi: 10.1038/ejhg.2012.308
|
[34] |
Jiang D, McPeek M S. Robust rare variant association testing for quantitative traits in samples with related individuals. Genetic Epidemiology, 2014, 38 (1): 10–20. doi: 10.1002/gepi.21775
|
[35] |
Wang X, Lee S, Zhu X, et al. GEE-based SNP set association test for continuous and discrete traits in family-based association studies. Genetic Epidemiology, 2013, 37 (8): 778–786. doi: 10.1002/gepi.21763
|
[36] |
Wang X, Zhang Z, Morris N, et al. Rare variant association test in family-based sequencing studies. Briefings in Bioinformatics, 2016, 18 (6): 954–961. doi: 10.1093/bib/bbw083
|
Figure
1.
Type-I error rates for the significance tests of
Figure
2.
Powers for the significance tests of maternal gene-environment interaction (
Figure
3.
Powers for the significance tests of maternal gene-environment interaction (
[1] |
Goddard K A, Tromp G, Romero R, et al. Candidate-gene association study of mothers with pre-eclampsia, and their infants, analyzing 775 SNPs in 190 genes. Human Heredity, 2007, 63 (1): 1–16. doi: 10.1159/000097926
|
[2] |
Kanayama N, Takahashi K, Matsuura T, et al. Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Molecular Human Reproduction, 2002, 8 (12): 1129–1135. doi: 10.1093/molehr/8.12.1129
|
[3] |
Saftlas A F, Beydoun H, Triche E. Immunogenetic determinants of preeclampsia and related pregnancy disorders: A systematic review. Obstetrics and Gynecology, 2005, 106 (1): 162–172. doi: 10.1097/01.AOG.0000167389.97019.37
|
[4] |
Wangler M F, Chang A S, Moley K H, et al. Factors associated with preterm delivery in mothers of children with Beckwith-Wiedemann syndrome: A case cohort study from the BWS registry. American Journal of Medical Genetics Part A, 2005, 134 (2): 187–191. doi: 10.1002/ajmg.a.30595
|
[5] |
Goldenberg R L, Culhane J F, Iams J D, et al. Epidemiology and causes of preterm birth. The Lancet, 2008, 371 (9606): 75–84. doi: 10.1016/S0140-6736(08)60074-4
|
[6] |
Zhang G, Feenstra B, Bacelis J, et al. Genetic associations with gestational duration and spontaneous preterm birth. The New England Journal of Medicine, 2017, 377 (12): 1156–1167. doi: 10.1056/NEJMoa1612665
|
[7] |
Hong X, Hao K, Ji H, et al. Genome-wide approach identifies a novel gene-maternal pre-pregnancy BMI interaction on preterm birth. Nature Communications, 2017, 8 (1): 15608. doi: 10.1038/ncomms15608
|
[8] |
Chen J, Zheng H, Wilson M L. Likelihood ratio tests for maternal and fetal genetic effects on obstetric complications. Genetic Epidemiology, 2009, 33 (6): 526–538. doi: 10.1002/gepi.20405
|
[9] |
Fu W, Li M, Sun K, et al. Testing maternal-fetal genotype incompatibility with mother-offspring pair data. Journal of Proteomics and Genomics Research, 2013, 1 (2): 40–56. doi: 10.14302/issn.2326-0793.jpgr-12-160
|
[10] |
Chen J, Lin D, Hochner H. Semiparametric maximum likelihood methods for analyzing genetic and environmental effects with case-control mother-child pair data. Biometrics, 2012, 68 (3): 869–877. doi: 10.1111/j.1541-0420.2011.01728.x
|
[11] |
Lin D, Weinberg C R, Feng R, et al. A multi-locus likelihood method for assessing parent-of-origin effects using case-control mother-child pairs. Genetic Epidemiology, 2013, 37 (2): 152–162. doi: 10.1002/gepi.21700
|
[12] |
Prentice R L, Pyke R. Logistic disease incidence models and case-control studies. Biometrika, 1979, 66 (3): 403–411. doi: 10.1093/biomet/66.3.403
|
[13] |
Shi M, Umbach D M, Vermeulen S H, et al. Making the most of case-mother/control-mother studies. American Journal of Epidemiology, 2008, 168 (5): 541–547. doi: 10.1093/aje/kwn149
|
[14] |
Zhang H, Mukherjee B, Arthur V, et al. An efficient and computationally robust statistical method for analyzing case-control mother-offspring pair genetic association studies. Annals of Applied Statics, 2020, 14 (2): 560–584. doi: 10.1214/19-AOAS1298
|
[15] |
Chen Y H, Chatterjee N, Carroll R J. Shrinkage estimators for robust and efficient inference in haplotype-based case-control studies. Journal of the American Statistical Association, 2009, 104 (485): 220–233. doi: 10.1198/jasa.2009.0104
|
[16] |
Owen A B. Empirical Likelihood. New York: Chapman and Hall/ CRC, 2001.
|
[17] |
Zhang H, Chatterjee N, Rader D, et al. Adjustment of nonconfounding covariates in case-control genetic association studies. Annals of Applied Statistics, 2018, 12 (1): 200–221. doi: 10.1214/17-AOAS1065
|
[18] |
Casella G, Berger R L. Statistical Inference. 2nd edition. Boston, MA: Cengage Learning, 2001.
|
[19] |
Mukherjee B, Chatterjee N. Exploiting gene-environment independence for analysis of case-control studies: An empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics, 2008, 64 (3): 685–694. doi: 10.1111/j.1541-0420.2007.00953.x
|
[20] |
Zhang K, Zhang H, Hochner H, et al. Covariate adjusted inference of parent-of-origin effects using case-control mother-child paired multilocus genotype data. Genetic Epidemiology, 2021, 45 (8): 830–847. doi: 10.1002/gepi.22428
|
[21] |
Engel S A M, Erichsen H C, Savitz D A, et al. Risk of spontaneous preterm birth is associated with common proinflammatory cytokine polymorphisms. Epidemiology, 2005, 16 (4): 469–477. doi: 10.1097/01.ede.0000164539.09250.31
|
[22] |
Frey H A, Stout M J, Pearson L N, et al. Genetic variation associated with preterm birth in African-American women. American Journal of Obstetrics and Gynecology, 2016, 215 (2): 235.e1–235.e8. doi: 10.1016/j.ajog.2016.03.008
|
[23] |
Haataja R, Karjalainen M K, Luukkonen A, et al. Mapping a new spontaneous preterm birth susceptibility gene, IGF1R, using linkage, haplotype sharing, and association analysis. PLoS Genetics, 2011, 7 (2): e1001293. doi: 10.1371/journal.pgen.1001293
|
[24] |
Menon R, Velez D R, Simhan H, et al. Multilocus interactions at maternal tumor necrosis factor-α, tumor necrosis factor receptors, interleukin-6 and interleukin-6 receptor genes predict spontaneous preterm labor in European-American women. American Journal of Obstetrics and Gynecology, 2006, 194 (6): 1616–1624. doi: 10.1016/j.ajog.2006.03.059
|
[25] |
Hendler I, Goldenberg R L, Mercer B M, et al. The preterm prediction study: Association between maternal body mass index and spontaneous and indicated preterm birth. American Journal of Obstetrics and Gynecology, 2005, 192 (3): 882–886. doi: 10.1016/j.ajog.2004.09.021
|
[26] |
Frayling T M, Timpson N J, Weedon M N, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 2007, 316 (5826): 889–894. doi: 10.1126/science.1141634
|
[27] |
Purcell S, Neale B, Todd-Brown K, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81 (3): 559–575. doi: 10.1086/519795
|
[28] |
Hamilton B E, Martin J A, Ventura S J. Births: Preliminary data for 2005. National Vital Statistics Reports, 2006, 55 (11): 1–18.
|
[29] |
Slattery M M, Morrison J J. Preterm delivery. The Lancet, 2002, 360 (9344): 1489–1497. doi: 10.1016/S0140-6736(02)11476-0
|
[30] |
Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nature Genetics, 2008, 40 (6): 695–701. doi: 10.1038/ng.f.136
|
[31] |
Lee S, Abecasis G R, Boehnke M, et al. Rare-variant association analysis: Study designs and statistical tests. American Journal of Human Genetics, 2014, 95 (1): 5–23. doi: 10.1016/j.ajhg.2014.06.009
|
[32] |
Schork N J, Murray S S, Frazer K A, et al. Common vs. rare allele hypotheses for complex diseases. Current Opinion in Genetics and Development, 2009, 19 (3): 212–219. doi: 10.1016/j.gde.2009.04.010
|
[33] |
Ionita-Laza I, Lee S, Makarov V, et al. Family-based association tests for sequence data, and comparisons with population-based association tests. European Journal of Human Genetics, 2013, 21 (10): 1158–1162. doi: 10.1038/ejhg.2012.308
|
[34] |
Jiang D, McPeek M S. Robust rare variant association testing for quantitative traits in samples with related individuals. Genetic Epidemiology, 2014, 38 (1): 10–20. doi: 10.1002/gepi.21775
|
[35] |
Wang X, Lee S, Zhu X, et al. GEE-based SNP set association test for continuous and discrete traits in family-based association studies. Genetic Epidemiology, 2013, 37 (8): 778–786. doi: 10.1002/gepi.21763
|
[36] |
Wang X, Zhang Z, Morris N, et al. Rare variant association test in family-based sequencing studies. Briefings in Bioinformatics, 2016, 18 (6): 954–961. doi: 10.1093/bib/bbw083
|