ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

3D time-domain IP forward modeling using unstructured finite element method under uneven terrain

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2020.05.019
  • Received Date: 26 August 2019
  • Accepted Date: 08 May 2020
  • Rev Recd Date: 08 May 2020
  • Publish Date: 31 May 2020
  • It is generally believed that the undulating terrain has little influence on the induced polarization (IP) exploration, because it has no influence under the relatively ideal condition of uniform polarization of the underground medium. However, for the complex medium model with ore body under the condition of undulating terrain, the terrain will certainly have an impact on the induced polarization method. Three have been very few studies on the quantitative characterization of terrain effect on the induced polarization method,mainly because the undulating terrain is not easy to simulate, especially for the three-dimensional model. In this paper, the three-dimensional unstructured finite element numerical simulation of induced polarization is developed. The unstructured mesh is particularly suitable for the numerical simulation of three-dimensional geoelectric model under arbitrary undulating terrain and the study of its influence on induced polarization. With the newly developed method, the three-dimensional induced polarization numerical simulation for plate-shaped and spherical anomaly bodies in rolling terrain is carried out, and the influence of rolling terrain on induced polarization response is discussed. The results show that the asymmetric topography will make the center position of IP anomaly deviate. The larger the slope gradient is, the larger the deviation will be, and the IP amplitude becomes smaller with increasing slope gradient. The asymmetry of polarization anomaly also plays an important role in the topography impact for its IP response.
    It is generally believed that the undulating terrain has little influence on the induced polarization (IP) exploration, because it has no influence under the relatively ideal condition of uniform polarization of the underground medium. However, for the complex medium model with ore body under the condition of undulating terrain, the terrain will certainly have an impact on the induced polarization method. Three have been very few studies on the quantitative characterization of terrain effect on the induced polarization method,mainly because the undulating terrain is not easy to simulate, especially for the three-dimensional model. In this paper, the three-dimensional unstructured finite element numerical simulation of induced polarization is developed. The unstructured mesh is particularly suitable for the numerical simulation of three-dimensional geoelectric model under arbitrary undulating terrain and the study of its influence on induced polarization. With the newly developed method, the three-dimensional induced polarization numerical simulation for plate-shaped and spherical anomaly bodies in rolling terrain is carried out, and the influence of rolling terrain on induced polarization response is discussed. The results show that the asymmetric topography will make the center position of IP anomaly deviate. The larger the slope gradient is, the larger the deviation will be, and the IP amplitude becomes smaller with increasing slope gradient. The asymmetry of polarization anomaly also plays an important role in the topography impact for its IP response.
  • loading
  • [1]
    张胜业, 潘玉玲. 应用地球物理学原理[M]. 武汉: 中国地质大学出版社, 2004: 4.
    [2]
    李长伟. 井中激发极化法正反演及快速迭代求解技术研究[D]. 长沙: 中南大学, 2012.
    [3]
    傅良魁. 电法勘探教程[M]. 北京: 地质出版社, 1983.
    [4]
    曾勇. 激电测深在新疆且末琪玉坡的应用研究[J]. 新疆有色金属, 2009, 32(S1): 14- 15.
    [5]
    杨华, 李金铭. 起伏地形对近矿围岩充电法影响规律的数值模拟研究[J]. 物探与化探, 1999(3):43-51+56.
    [6]
    吴小平. 单斜地形条件对激电对称四极测深拟断面图的影响[J].地球物理学进展, 2016, 31(5):2166-2171.
    [7]
    COGGON J H. Electromagnetic and electrical modeling by the finite element method[J]. Geophysics, 1971, 36(2): 132-151.
    [8]
    徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994: 12.
    [9]
    阮百尧, 熊彬, 徐世浙. 三维地电断面电阻率测深有限元数值模拟[J]. 地球科学——中国地质大学学报, 2001, 26(1): 73-77.
    [10]
    阮百尧, 熊彬. 电导率连续变化的三维电阻率测深有限元模拟[J]. 地球物理学报, 2002,45(1):131-138.
    [11]
    吴小平, 汪彤彤. 利用共轭梯度算法的电阻率三维有限元正演[J].地球物理学报, 2003, 46(3):428-432.
    [12]
    吕玉增, 阮百尧. 复杂地形条件下四面体剖分电阻率三维有限元数值模拟[J]. 地球物理学进展, 2006, 21(4): 1302-1308.
    [13]
    李勇, 林品荣, 徐宝利, 等. 复杂地形三维直流电阻率有限元数值模拟[J]. 地球物理学进展, 2009, 24(3): 1039-1046.
    [14]
    BLOME M, MAURER H R, SCHMIDT K. Advances in three-dimensional geoelectric forward solver techniques[J]. Geophysical Journal International, 2009, 176 (3): 740-752.
    [15]
    Ren Z Y, Tang J T.3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method[J]. Geophysics, 2010, 75(1): H7-H17.
    [16]
    WANG W, WU X P, SPITZER K. Three-dimensional DC anisotropic resistivity modelling using finite elements on unstructured grids[J]. Geophysical Journal International, 2013, 193(2): 734-746.
    [17]
    麻昌英, 柳建新, 刘海飞, 等. 复杂地形下高密度激电法2.5维有限单元法数值模拟[J]. 物探化探计算技术, 2014, 36(4): 405-409.
    [18]
    陈进超, 王绪本, 王丽坤. 时间域激发极化法非结构化三角网格有限元正演模拟[J]. 物探化探计算技术, 2011, 33(4): 411-417,347.
    [19]
    林家勇, 汤井田, 丁茂斌, 等. 复杂地形条件下激发极化有限单元法三维数值模拟[J]. 吉林大学学报(地球科学版), 2010, 40(5): 1183-1187.
    [20]
    吴小平, 徐果明, 李时灿. 利用不完全Cholesky共轭梯度法求解点源三维地电场[J]. 地球物理学报, 1998, 41(6): 848-855.
    [21]
    CIARLETP G. The finite element method for elliptic problems[M]. Philadelphia, PA, USA: SIAM, 2002.
    [22]
    SI H. TetGen, a Delaunay-based quality tetrahedral mesh generator[J]. ACM Transactions on Mathematical Software, 2015, 41(2): 11; doi: 10.1145/2629697.
  • 加载中

Catalog

    [1]
    张胜业, 潘玉玲. 应用地球物理学原理[M]. 武汉: 中国地质大学出版社, 2004: 4.
    [2]
    李长伟. 井中激发极化法正反演及快速迭代求解技术研究[D]. 长沙: 中南大学, 2012.
    [3]
    傅良魁. 电法勘探教程[M]. 北京: 地质出版社, 1983.
    [4]
    曾勇. 激电测深在新疆且末琪玉坡的应用研究[J]. 新疆有色金属, 2009, 32(S1): 14- 15.
    [5]
    杨华, 李金铭. 起伏地形对近矿围岩充电法影响规律的数值模拟研究[J]. 物探与化探, 1999(3):43-51+56.
    [6]
    吴小平. 单斜地形条件对激电对称四极测深拟断面图的影响[J].地球物理学进展, 2016, 31(5):2166-2171.
    [7]
    COGGON J H. Electromagnetic and electrical modeling by the finite element method[J]. Geophysics, 1971, 36(2): 132-151.
    [8]
    徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994: 12.
    [9]
    阮百尧, 熊彬, 徐世浙. 三维地电断面电阻率测深有限元数值模拟[J]. 地球科学——中国地质大学学报, 2001, 26(1): 73-77.
    [10]
    阮百尧, 熊彬. 电导率连续变化的三维电阻率测深有限元模拟[J]. 地球物理学报, 2002,45(1):131-138.
    [11]
    吴小平, 汪彤彤. 利用共轭梯度算法的电阻率三维有限元正演[J].地球物理学报, 2003, 46(3):428-432.
    [12]
    吕玉增, 阮百尧. 复杂地形条件下四面体剖分电阻率三维有限元数值模拟[J]. 地球物理学进展, 2006, 21(4): 1302-1308.
    [13]
    李勇, 林品荣, 徐宝利, 等. 复杂地形三维直流电阻率有限元数值模拟[J]. 地球物理学进展, 2009, 24(3): 1039-1046.
    [14]
    BLOME M, MAURER H R, SCHMIDT K. Advances in three-dimensional geoelectric forward solver techniques[J]. Geophysical Journal International, 2009, 176 (3): 740-752.
    [15]
    Ren Z Y, Tang J T.3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method[J]. Geophysics, 2010, 75(1): H7-H17.
    [16]
    WANG W, WU X P, SPITZER K. Three-dimensional DC anisotropic resistivity modelling using finite elements on unstructured grids[J]. Geophysical Journal International, 2013, 193(2): 734-746.
    [17]
    麻昌英, 柳建新, 刘海飞, 等. 复杂地形下高密度激电法2.5维有限单元法数值模拟[J]. 物探化探计算技术, 2014, 36(4): 405-409.
    [18]
    陈进超, 王绪本, 王丽坤. 时间域激发极化法非结构化三角网格有限元正演模拟[J]. 物探化探计算技术, 2011, 33(4): 411-417,347.
    [19]
    林家勇, 汤井田, 丁茂斌, 等. 复杂地形条件下激发极化有限单元法三维数值模拟[J]. 吉林大学学报(地球科学版), 2010, 40(5): 1183-1187.
    [20]
    吴小平, 徐果明, 李时灿. 利用不完全Cholesky共轭梯度法求解点源三维地电场[J]. 地球物理学报, 1998, 41(6): 848-855.
    [21]
    CIARLETP G. The finite element method for elliptic problems[M]. Philadelphia, PA, USA: SIAM, 2002.
    [22]
    SI H. TetGen, a Delaunay-based quality tetrahedral mesh generator[J]. ACM Transactions on Mathematical Software, 2015, 41(2): 11; doi: 10.1145/2629697.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return