[1] |
XU R, MA Z E.Global stability of a delayed SEIRS epidemic model with saturation incidence rate[J]. Nonlinear Dynamics, 2010, 61: 229-239.
|
[2] |
MA Yanli, LIU Jiabao, LI Haixia . Global dynamics of an SIQR model with vaccination and elimination hybrid strategies[J]. Mathematics, 2018, 6(12): 328-339.
|
[3] |
马艳丽,张仲华,刘家保,等.一类具有脉冲接种与脉冲剔除的SIQR模型[J].中国科学技术大学学报,2018,48(2):111-117.
|
[4] |
LI Guihua, WANG Wendi, JIN Zhen. Global stability of an SEIR model with constant immigration[J]. Chaos, Solitons and Fractals, 2006, 30(4): 1012-1019.
|
[5] |
ECKALBAR J C, ECKALBAR W L. Dynamics of an SIR model with vaccination dependent on past prevalence with high-order distributed delay[J]. Biosystems, 2015, 129(1): 50-65.
|
[6] |
徐金瑞,王美娟,张拥军. 一类具有标准发生率的SIS型传染病模型的全局稳定性[J].生物数学学报,2010,25(2):249-256.
|
[7] |
马艳丽,张仲华.潜伏类和移出类具有传染性的SEIR模型的渐近分析[J].中国科学技术大学学报,2016,46(2):95-103.
|
[8] |
LI Jianquan, ZHANG Juan, MA Zhi’en. Global analysis of some epidemic models with general contact rate and constant immigration [J]. Applied Mathematics and MechanicsHYPERLINK"https://link.springer.com/journal/10483"\o"AppliedMathematicsandMechanics", 2004, 25(4): 396-404.
|
[9] |
LI GuihuaHYPERLINK"https://www.sciencedirect.com/science/article/pii/S0960077904003558"\l"!", JIN ZhenHYPERLINK"https://www.sciencedirect.com/science/article/pii/S0960077904003558"\l"!". Global stability of an SEI epidemic model with general contact rate [J]. Chaos, Solitons and Fractals, 2005, 23(3): 997-1004.
|
[10] |
马艳丽,徐文雄,张仲华.具有一般形式接触率的SEIR模型的稳定性分析[J].中国科学技术大学学报,2015,45(9):737-744.
|
[11] |
TAN X X, LI S J, DAI Q W, et al. An epidemic model with isolated intervention based on cellular automata [J]. Advanced Materials Research, 2014, 926(1): 1065-1068.
|
[12] |
ECKALBAR J C, ECKALBAR W L. Dynamics of an SIR model with vaccination dependent on past prevalence with high-order distributed delay[J]. Biosystems, 2015, 129(1): 50-65.
|
[13] |
SHI PEILIN, DONG LINGZHEN. Dynamical models for infectious diseases with varying population size and vaccination[J]. Journal of Applied Mathematics, 2012, 12(1), 253-273.
|
[14] |
叶志勇HYPERLINK"http://www.cnki.com.cn/Article/%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20http:/yuanjian.cnki.com.cn/Search/Result?author=%E5%8F%B6%E5%BF%97%E5%8B%87"\t"_blank",刘原HYPERLINK"http://www.cnki.com.cn/Article/%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20http:/yuanjian.cnki.com.cn/Search/Result?author=%E5%88%98%E5%8E%9F"\t"_blank",吴用HYPERLINK"http://www.cnki.com.cn/Article/%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20http:/yuanjian.cnki.com.cn/Search/Result?author=%E5%90%B4%E7%94%A8"\t"_blank".具有非单调传染率的SIQR传染病模型的稳定性分析[J].生物数学学报,2014,29(1):105-112.
|
[15] |
张珍,靳祯.一类带脉冲接种和脉冲剔除的SIR传染病模型的稳定性态[J].太原师范学院学报(自然科学版),2006,5(4):8-10.
|
[16] |
马知恩,周义仓,王稳地,等.传染病动力学的数学建模与研究[M].北京:科学出版社,2004:3-8.
|
[17] |
马知恩,周义仓.常微分方程定性与稳定性方法[M] .北京:科学出版社,2001: 41-50.
|
[18] |
徐文雄,张仲华,成芳.一类SIS流行病传播数学模型全局渐近稳定性[J].四川师范大学学报(自然科学版),2004,27(6):585-588.)
|
[1] |
XU R, MA Z E.Global stability of a delayed SEIRS epidemic model with saturation incidence rate[J]. Nonlinear Dynamics, 2010, 61: 229-239.
|
[2] |
MA Yanli, LIU Jiabao, LI Haixia . Global dynamics of an SIQR model with vaccination and elimination hybrid strategies[J]. Mathematics, 2018, 6(12): 328-339.
|
[3] |
马艳丽,张仲华,刘家保,等.一类具有脉冲接种与脉冲剔除的SIQR模型[J].中国科学技术大学学报,2018,48(2):111-117.
|
[4] |
LI Guihua, WANG Wendi, JIN Zhen. Global stability of an SEIR model with constant immigration[J]. Chaos, Solitons and Fractals, 2006, 30(4): 1012-1019.
|
[5] |
ECKALBAR J C, ECKALBAR W L. Dynamics of an SIR model with vaccination dependent on past prevalence with high-order distributed delay[J]. Biosystems, 2015, 129(1): 50-65.
|
[6] |
徐金瑞,王美娟,张拥军. 一类具有标准发生率的SIS型传染病模型的全局稳定性[J].生物数学学报,2010,25(2):249-256.
|
[7] |
马艳丽,张仲华.潜伏类和移出类具有传染性的SEIR模型的渐近分析[J].中国科学技术大学学报,2016,46(2):95-103.
|
[8] |
LI Jianquan, ZHANG Juan, MA Zhi’en. Global analysis of some epidemic models with general contact rate and constant immigration [J]. Applied Mathematics and MechanicsHYPERLINK"https://link.springer.com/journal/10483"\o"AppliedMathematicsandMechanics", 2004, 25(4): 396-404.
|
[9] |
LI GuihuaHYPERLINK"https://www.sciencedirect.com/science/article/pii/S0960077904003558"\l"!", JIN ZhenHYPERLINK"https://www.sciencedirect.com/science/article/pii/S0960077904003558"\l"!". Global stability of an SEI epidemic model with general contact rate [J]. Chaos, Solitons and Fractals, 2005, 23(3): 997-1004.
|
[10] |
马艳丽,徐文雄,张仲华.具有一般形式接触率的SEIR模型的稳定性分析[J].中国科学技术大学学报,2015,45(9):737-744.
|
[11] |
TAN X X, LI S J, DAI Q W, et al. An epidemic model with isolated intervention based on cellular automata [J]. Advanced Materials Research, 2014, 926(1): 1065-1068.
|
[12] |
ECKALBAR J C, ECKALBAR W L. Dynamics of an SIR model with vaccination dependent on past prevalence with high-order distributed delay[J]. Biosystems, 2015, 129(1): 50-65.
|
[13] |
SHI PEILIN, DONG LINGZHEN. Dynamical models for infectious diseases with varying population size and vaccination[J]. Journal of Applied Mathematics, 2012, 12(1), 253-273.
|
[14] |
叶志勇HYPERLINK"http://www.cnki.com.cn/Article/%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20http:/yuanjian.cnki.com.cn/Search/Result?author=%E5%8F%B6%E5%BF%97%E5%8B%87"\t"_blank",刘原HYPERLINK"http://www.cnki.com.cn/Article/%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20http:/yuanjian.cnki.com.cn/Search/Result?author=%E5%88%98%E5%8E%9F"\t"_blank",吴用HYPERLINK"http://www.cnki.com.cn/Article/%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20http:/yuanjian.cnki.com.cn/Search/Result?author=%E5%90%B4%E7%94%A8"\t"_blank".具有非单调传染率的SIQR传染病模型的稳定性分析[J].生物数学学报,2014,29(1):105-112.
|
[15] |
张珍,靳祯.一类带脉冲接种和脉冲剔除的SIR传染病模型的稳定性态[J].太原师范学院学报(自然科学版),2006,5(4):8-10.
|
[16] |
马知恩,周义仓,王稳地,等.传染病动力学的数学建模与研究[M].北京:科学出版社,2004:3-8.
|
[17] |
马知恩,周义仓.常微分方程定性与稳定性方法[M] .北京:科学出版社,2001: 41-50.
|
[18] |
徐文雄,张仲华,成芳.一类SIS流行病传播数学模型全局渐近稳定性[J].四川师范大学学报(自然科学版),2004,27(6):585-588.)
|