[1] |
BROOKS C. Introductory Econometrics for Finance [M]. Cambridge University Press, 2019.
|
[2] |
BLACK F. Studies in stock price volatility changes[C]//Proceedings of the 1976 Meeting of the Business & Economic Statistics. Washington: American Statistical Association, 1976: 177-81.
|
[3] |
ENGLE R F. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[J]. Econometrica1981, 50: 987-1007.
|
[4] |
BOLLERSLEV T. Generalized autoregressive conditional heteroscedasticity [J]. Journal of Econometrics, 1986, 31(3):307-327.
|
[5] |
CREAL D, KOOPMAN S J, LUCAS A. Generalized autoregressive score models with applications [J]. Journal of Applied Econometrics, 2013, 28(5):777-795.
|
[6] |
ENGLE R F, RUSSELL J R. Autoregressive conditional duration: A new model for irregularly spaced transaction data [J]. Econometrica, 1998, 66(5): 1127-1162.
|
[7] |
PATTON A J. Modelling asymmetric exchange rate dependence. International economic review [J]. 2006, 47(2):527-556.
|
[8] |
HANSEN B E. Autoregressive conditional density estimation [J]. International Economic Review, 1994, 35(3):705-730.
|
[9] |
STEEL F. On bayesian modeling of fat tails and skewness [J]. Journal of the American Statistical Association, 1998, 93(441):359-371.
|
[10] |
THEODOSSIOU P. Financial data and the skewed generalized t distribution [J]. Management Science, 1998, 44:1650-1661.
|
[11] |
BRANCO M D, DEY D K. A general class of multivariate skew-elliptical distributions [J]. Journal of Multivariate Analysis, 2001, 79(1):99-113.
|
[12] |
BAUWENS L, LAURENT S. A new class of multivariate skew densities, with application to generalized autoregressive conditional heteroscedasticity models[J]. Journal of Business and Economic Statistics, 2005, 23(3):346-354.
|
[13] |
JONES M C, FADDY M J. A skew extension of the t-distribution, with applications [J]. Journal of the Royal Statistical Society,2003, 65(1):159-174.
|
[14] |
SAHU S K, DEY D K, BRANCO M D. A new class of multivariate skew distributions with applications to bayesian regression models [J]. Canadian Journal of Statistics, 2003, 31(2):129-150.
|
[15] |
AZZALINI A, CAPITANIO A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution [J]. Journal of the Royal Statistical Society,2003, 65(2):367-389.
|
[16] |
AAS K, HAFF I H. The generalized hyperbolic skew student's t-distribution [J].Journal of Financial Econometrics, 2006, 4(2):275-309.
|
[17] |
ZHU D M, GALBRAITH J W. A generalized asymmetric student-t distribution with application to financial econometrics [J]. Journal of Econometrics, 2010, 157(2):297-305.
|
[18] |
RIVAS D, CALEYO F, VALOR A, et al. Extreme value analysis applied to pitting corrosion experiments in low carbon steel: Comparison of block maxima and peak over threshold approaches [J]. Corrosion Science, 2008, 50(11):3193-3204.
|
[19] |
LONGIN F. Value at risk: Une nouvelle approche fondée sur les valeurs extre^mes [J]. Annales économie et de statistique, 1998,52: 23-51.
|
[20] |
NEFTCI S N. Value at risk calculations, extreme events, and tail estimation [J]. Journal of Derivatives, 2000, 7(3):23-38.
|
[21] |
FROMONT E. Modélisation des rentabiliteé extre^mes des distributions de hedge funds [J]. Euro-Mediterranean Economics and Finance, 2005:126.
|
[22] |
CARVALHAL A, MENDES B V M. Value-at-risk and extreme returns in Asian stock markets [J]. International Journal of Business, 2003, 8(1):17-40.
|
[23] |
MCNEIL A J, FREY R. Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach [J]. Journal of Empirical Finance, 2000, 7(3-4):271-300.
|
[24] |
MARIMOUTOU V, RAGGAD B, TRABELSI A. Extreme value theory and value at risk: Application to oil market [J]. Energy Economics, 2009, 31(4):519-530.
|
[25] |
ASSAF A. Extreme observations and risk assessment in the equity markets of mena region: Tail measures and value-at-risk [J]. International Review of Financial Analysis, 2009, 18(3):109-116.
|
[26] |
Pickands J Ⅲ. Statistical inference using extreme order statistics [J]. The Annals of Statistics, 1975, 3(1):119-131.
|
[27] |
DUMOUCHEL W H. Estimating the stable index α in order to measure tail thickness: A critique [J]. The Annals of Statistics, 1983, 11(4):1019-1031.
|
[28] |
PATTON A J, ZIEGEL J F, CHEN R. Dynamic semiparametric models for expected shortfall (and value-at-risk) [J]. Journal of Econometrics, 2019, 211(2): 388-413.
|
[29] |
NELSON D B. Conditional heteroskedasticity in asset returns: A new approach [J]. Econometrica, 1991,59(2): 347-370.
|
[30] |
GLOSTEN L R, JAGANNATHAN R, RUNKLE D E. On the relation between the expected value and the volatility of the nominal excess return on stocks [J]. The Journal of Finance, 1993, 48(5):1779-1801.
|
[31] |
CATANIA L, BOUDT K, ARDIA D. GAS: Generalized Autoregressive Score Models[CP]. 2017.
|
[32] |
EMBRECHTS P, KAUFMANN R, PATIE P. Strategic long-term financial risks: Single risk factors [J]. Computational Optimization and Applications, 2005, 32(1-2): 61-90.)
|
[1] |
BROOKS C. Introductory Econometrics for Finance [M]. Cambridge University Press, 2019.
|
[2] |
BLACK F. Studies in stock price volatility changes[C]//Proceedings of the 1976 Meeting of the Business & Economic Statistics. Washington: American Statistical Association, 1976: 177-81.
|
[3] |
ENGLE R F. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[J]. Econometrica1981, 50: 987-1007.
|
[4] |
BOLLERSLEV T. Generalized autoregressive conditional heteroscedasticity [J]. Journal of Econometrics, 1986, 31(3):307-327.
|
[5] |
CREAL D, KOOPMAN S J, LUCAS A. Generalized autoregressive score models with applications [J]. Journal of Applied Econometrics, 2013, 28(5):777-795.
|
[6] |
ENGLE R F, RUSSELL J R. Autoregressive conditional duration: A new model for irregularly spaced transaction data [J]. Econometrica, 1998, 66(5): 1127-1162.
|
[7] |
PATTON A J. Modelling asymmetric exchange rate dependence. International economic review [J]. 2006, 47(2):527-556.
|
[8] |
HANSEN B E. Autoregressive conditional density estimation [J]. International Economic Review, 1994, 35(3):705-730.
|
[9] |
STEEL F. On bayesian modeling of fat tails and skewness [J]. Journal of the American Statistical Association, 1998, 93(441):359-371.
|
[10] |
THEODOSSIOU P. Financial data and the skewed generalized t distribution [J]. Management Science, 1998, 44:1650-1661.
|
[11] |
BRANCO M D, DEY D K. A general class of multivariate skew-elliptical distributions [J]. Journal of Multivariate Analysis, 2001, 79(1):99-113.
|
[12] |
BAUWENS L, LAURENT S. A new class of multivariate skew densities, with application to generalized autoregressive conditional heteroscedasticity models[J]. Journal of Business and Economic Statistics, 2005, 23(3):346-354.
|
[13] |
JONES M C, FADDY M J. A skew extension of the t-distribution, with applications [J]. Journal of the Royal Statistical Society,2003, 65(1):159-174.
|
[14] |
SAHU S K, DEY D K, BRANCO M D. A new class of multivariate skew distributions with applications to bayesian regression models [J]. Canadian Journal of Statistics, 2003, 31(2):129-150.
|
[15] |
AZZALINI A, CAPITANIO A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution [J]. Journal of the Royal Statistical Society,2003, 65(2):367-389.
|
[16] |
AAS K, HAFF I H. The generalized hyperbolic skew student's t-distribution [J].Journal of Financial Econometrics, 2006, 4(2):275-309.
|
[17] |
ZHU D M, GALBRAITH J W. A generalized asymmetric student-t distribution with application to financial econometrics [J]. Journal of Econometrics, 2010, 157(2):297-305.
|
[18] |
RIVAS D, CALEYO F, VALOR A, et al. Extreme value analysis applied to pitting corrosion experiments in low carbon steel: Comparison of block maxima and peak over threshold approaches [J]. Corrosion Science, 2008, 50(11):3193-3204.
|
[19] |
LONGIN F. Value at risk: Une nouvelle approche fondée sur les valeurs extre^mes [J]. Annales économie et de statistique, 1998,52: 23-51.
|
[20] |
NEFTCI S N. Value at risk calculations, extreme events, and tail estimation [J]. Journal of Derivatives, 2000, 7(3):23-38.
|
[21] |
FROMONT E. Modélisation des rentabiliteé extre^mes des distributions de hedge funds [J]. Euro-Mediterranean Economics and Finance, 2005:126.
|
[22] |
CARVALHAL A, MENDES B V M. Value-at-risk and extreme returns in Asian stock markets [J]. International Journal of Business, 2003, 8(1):17-40.
|
[23] |
MCNEIL A J, FREY R. Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach [J]. Journal of Empirical Finance, 2000, 7(3-4):271-300.
|
[24] |
MARIMOUTOU V, RAGGAD B, TRABELSI A. Extreme value theory and value at risk: Application to oil market [J]. Energy Economics, 2009, 31(4):519-530.
|
[25] |
ASSAF A. Extreme observations and risk assessment in the equity markets of mena region: Tail measures and value-at-risk [J]. International Review of Financial Analysis, 2009, 18(3):109-116.
|
[26] |
Pickands J Ⅲ. Statistical inference using extreme order statistics [J]. The Annals of Statistics, 1975, 3(1):119-131.
|
[27] |
DUMOUCHEL W H. Estimating the stable index α in order to measure tail thickness: A critique [J]. The Annals of Statistics, 1983, 11(4):1019-1031.
|
[28] |
PATTON A J, ZIEGEL J F, CHEN R. Dynamic semiparametric models for expected shortfall (and value-at-risk) [J]. Journal of Econometrics, 2019, 211(2): 388-413.
|
[29] |
NELSON D B. Conditional heteroskedasticity in asset returns: A new approach [J]. Econometrica, 1991,59(2): 347-370.
|
[30] |
GLOSTEN L R, JAGANNATHAN R, RUNKLE D E. On the relation between the expected value and the volatility of the nominal excess return on stocks [J]. The Journal of Finance, 1993, 48(5):1779-1801.
|
[31] |
CATANIA L, BOUDT K, ARDIA D. GAS: Generalized Autoregressive Score Models[CP]. 2017.
|
[32] |
EMBRECHTS P, KAUFMANN R, PATIE P. Strategic long-term financial risks: Single risk factors [J]. Computational Optimization and Applications, 2005, 32(1-2): 61-90.)
|