[1] |
DATKO R. Extending a theorem of Liapunov to Hilbert spaces[J]. J Math Anal Appl, 1970,32(3): 610-616.
|
[2] |
PAZY A. Semigroups of Linear Operators and Applications to Partial Differential Equations[M]. New York: Springer, 1983.
|
[3] |
ROLEWICZ S. On uniform N-equistability[J]. J Math Anal Appl, 1986, 115(2): 434-441.
|
[4] |
PREDA C. On the uniform exponential stability of linear skew-product semiflows[J]. J Funct Spaces Appl, 2006, 4(2): 145-161.
|
[5] |
HAI P V. Continuous and discrete characterizations for the uniform exponential stability of linear skew-evolution semiflows[J]. Nolinear Anal, 2010, 72(12): 4390-4396.
|
[6] |
PREDA C, PREDA P, BTRAN F. An extension of a theorem of R. Datko to the case of (non)uniform exponential stability of linear skew-product semiflows[J]. J Math Anal Appl, 2015, 425(2): 1148-1154.
|
[7] |
PREDA C, ONOFREI O R.Nonuniform exponential dichotomy for linear skew-product semiflows over semiflows[J]. Semigroup Forum, 2018, 96(2): 241-252.
|
[8] |
MEGAN M, SASU A L, SASU B. Perron conditions for uniform exponential expansiveness of linear skew-product flows[J].Monatsh Math, 2003, 138(2): 145-157.
|
[9] |
MEGAN M, SASU A L, SASU B. Exponential instability of linear skew-productsemiflows in terms of Banach function spaces[J]. Results Math, 2004, 45(3): 309-318.
|
[10] |
MEGAN M, SASU A L, SASU B. Exponential stability and exponential instability for linear skew-product flows[J]. Math Bohem, 2004, 129(3): 225-243.
|
[11] |
岳田,雷国梁,宋晓秋.线性斜演化半流一致指数膨胀性的若干刻画[J].数学进展, 2016, 45(3): 433-442.
|
[12] |
PREDA P, POGAN A, PREDA C.Functionals on function and sequence spaces connected with the exponential stability of evolutionary processes[J]. Czechoslovak Math, 2006, 131(56): 425-435.
|
[1] |
DATKO R. Extending a theorem of Liapunov to Hilbert spaces[J]. J Math Anal Appl, 1970,32(3): 610-616.
|
[2] |
PAZY A. Semigroups of Linear Operators and Applications to Partial Differential Equations[M]. New York: Springer, 1983.
|
[3] |
ROLEWICZ S. On uniform N-equistability[J]. J Math Anal Appl, 1986, 115(2): 434-441.
|
[4] |
PREDA C. On the uniform exponential stability of linear skew-product semiflows[J]. J Funct Spaces Appl, 2006, 4(2): 145-161.
|
[5] |
HAI P V. Continuous and discrete characterizations for the uniform exponential stability of linear skew-evolution semiflows[J]. Nolinear Anal, 2010, 72(12): 4390-4396.
|
[6] |
PREDA C, PREDA P, BTRAN F. An extension of a theorem of R. Datko to the case of (non)uniform exponential stability of linear skew-product semiflows[J]. J Math Anal Appl, 2015, 425(2): 1148-1154.
|
[7] |
PREDA C, ONOFREI O R.Nonuniform exponential dichotomy for linear skew-product semiflows over semiflows[J]. Semigroup Forum, 2018, 96(2): 241-252.
|
[8] |
MEGAN M, SASU A L, SASU B. Perron conditions for uniform exponential expansiveness of linear skew-product flows[J].Monatsh Math, 2003, 138(2): 145-157.
|
[9] |
MEGAN M, SASU A L, SASU B. Exponential instability of linear skew-productsemiflows in terms of Banach function spaces[J]. Results Math, 2004, 45(3): 309-318.
|
[10] |
MEGAN M, SASU A L, SASU B. Exponential stability and exponential instability for linear skew-product flows[J]. Math Bohem, 2004, 129(3): 225-243.
|
[11] |
岳田,雷国梁,宋晓秋.线性斜演化半流一致指数膨胀性的若干刻画[J].数学进展, 2016, 45(3): 433-442.
|
[12] |
PREDA P, POGAN A, PREDA C.Functionals on function and sequence spaces connected with the exponential stability of evolutionary processes[J]. Czechoslovak Math, 2006, 131(56): 425-435.
|