[1] 
DATKO R. Extending a theorem of Liapunov to Hilbert spaces[J]. J Math Anal Appl, 1970,32(3): 610616.

[2] 
PAZY A. Semigroups of Linear Operators and Applications to Partial Differential Equations[M]. New York: Springer, 1983.

[3] 
ROLEWICZ S. On uniform Nequistability[J]. J Math Anal Appl, 1986, 115(2): 434441.

[4] 
PREDA C. On the uniform exponential stability of linear skewproduct semiflows[J]. J Funct Spaces Appl, 2006, 4(2): 145161.

[5] 
HAI P V. Continuous and discrete characterizations for the uniform exponential stability of linear skewevolution semiflows[J]. Nolinear Anal, 2010, 72(12): 43904396.

[6] 
PREDA C, PREDA P, BTRAN F. An extension of a theorem of R. Datko to the case of (non)uniform exponential stability of linear skewproduct semiflows[J]. J Math Anal Appl, 2015, 425(2): 11481154.

[7] 
PREDA C, ONOFREI O R.Nonuniform exponential dichotomy for linear skewproduct semiflows over semiflows[J]. Semigroup Forum, 2018, 96(2): 241252.

[8] 
MEGAN M, SASU A L, SASU B. Perron conditions for uniform exponential expansiveness of linear skewproduct flows[J].Monatsh Math, 2003, 138(2): 145157.

[9] 
MEGAN M, SASU A L, SASU B. Exponential instability of linear skewproductsemiflows in terms of Banach function spaces[J]. Results Math, 2004, 45(3): 309318.

[10] 
MEGAN M, SASU A L, SASU B. Exponential stability and exponential instability for linear skewproduct flows[J]. Math Bohem, 2004, 129(3): 225243.

[11] 
岳田，雷国梁，宋晓秋.线性斜演化半流一致指数膨胀性的若干刻画[J].数学进展, 2016, 45(3): 433442.

[12] 
PREDA P, POGAN A, PREDA C.Functionals on function and sequence spaces connected with the exponential stability of evolutionary processes[J]. Czechoslovak Math, 2006, 131(56): 425435.

[1] 
DATKO R. Extending a theorem of Liapunov to Hilbert spaces[J]. J Math Anal Appl, 1970,32(3): 610616.

[2] 
PAZY A. Semigroups of Linear Operators and Applications to Partial Differential Equations[M]. New York: Springer, 1983.

[3] 
ROLEWICZ S. On uniform Nequistability[J]. J Math Anal Appl, 1986, 115(2): 434441.

[4] 
PREDA C. On the uniform exponential stability of linear skewproduct semiflows[J]. J Funct Spaces Appl, 2006, 4(2): 145161.

[5] 
HAI P V. Continuous and discrete characterizations for the uniform exponential stability of linear skewevolution semiflows[J]. Nolinear Anal, 2010, 72(12): 43904396.

[6] 
PREDA C, PREDA P, BTRAN F. An extension of a theorem of R. Datko to the case of (non)uniform exponential stability of linear skewproduct semiflows[J]. J Math Anal Appl, 2015, 425(2): 11481154.

[7] 
PREDA C, ONOFREI O R.Nonuniform exponential dichotomy for linear skewproduct semiflows over semiflows[J]. Semigroup Forum, 2018, 96(2): 241252.

[8] 
MEGAN M, SASU A L, SASU B. Perron conditions for uniform exponential expansiveness of linear skewproduct flows[J].Monatsh Math, 2003, 138(2): 145157.

[9] 
MEGAN M, SASU A L, SASU B. Exponential instability of linear skewproductsemiflows in terms of Banach function spaces[J]. Results Math, 2004, 45(3): 309318.

[10] 
MEGAN M, SASU A L, SASU B. Exponential stability and exponential instability for linear skewproduct flows[J]. Math Bohem, 2004, 129(3): 225243.

[11] 
岳田，雷国梁，宋晓秋.线性斜演化半流一致指数膨胀性的若干刻画[J].数学进展, 2016, 45(3): 433442.

[12] 
PREDA P, POGAN A, PREDA C.Functionals on function and sequence spaces connected with the exponential stability of evolutionary processes[J]. Czechoslovak Math, 2006, 131(56): 425435.
