[1] |
HELLESETH T, KUMAR P V. Sequences with low correlation[C]// Handbook of Coding Theory. Amsterdam: Elsevier, 1998.
|
[2] |
LI N, TANG X H, HELLESETH T. New M-ary sequences with low autocorrelation from interleaved technique[J]. Des Codes Crytogr, 2014, 73: 237-249.
|
[3] |
DING C. Codes From Difference Sets[M]. Singapore: World Scientific, 2015.
|
[4] |
ZHU S X, WANG Y, SHI M J. Some results on cyclic codes over F2+vF2[J]. IEEE Trans Inform Theory, 2010, 56(4): 1680-1684.
|
[5] |
KUMAR P V, HELLESETH T, CALDERBANK A R. An upper bound for Weil exponential sums over Galois rings and applications[J]. IEEE Trans Inform Theory, 1995, 41(2): 456-468.
|
[6] |
KUMAR P V, HELLESETH T, CALDERBANK A R, et al. Large families of quaternary sequences with low correlation[J]. IEEE Trans Inform Theory, 1996, 42(2): 579-592.
|
[7] |
SHANBHAG A, KUMAR P V, HELLESETH T. Improved binary codes and sequences families from Z4-linear codes[J]. IEEE Trans Inform Theory, 1996, 42(5): 1582-1586.
|
[8] |
ZINOVIEV D V, SOL P. Quaternary codes and biphase sequences from Z8-codes[J]. Problems of Information Transmission, 2004, 40(2): 147-158 (translated from Problemy Peredachi Informatsii, 2004, 2: 50-62).
|
[9] |
HU H G, FENG D G, WU W L. Incomplete exponential sums over Galois rings with application to some binary sequences derived from Z2l[J]. IEEE Trans Inform Theory, 2006, 52(5): 2260-2265.
|
[10] |
LAHTONEN J, LING S, SOL P, ZINOVIEV D V. Z8-Kerdock codes and pseudo-random binary sequences[J]. J Complexity, 2004, 20: 318-330.
|
[11] |
WAN Z X. Finite Fields and Galois Rings[M]. Singapore: World Scientific, 2003.
|
[12] |
LIDL R, NIEDERREITER H. Finite Fields[M]. Cambridge, UK: Cambridge University Press, 1997.
|
[13] |
GOLOMB S W, GONG G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar[M]. New York: Cambridge University Press, 2005.
|
[14] |
LING S, BLACKFORD J T. Zpk+1-linear codes[J]. IEEE Trans Inform Theory, 2002, 48(9): 2592-2605.
|
[15] |
HAMMONS A R Jr, KUMAR P V, CALDERBANK A R, et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes[J]. IEEE Trans Inform Theory, 1994, 40(2): 301-309.
|