
The achievement of electrical spin control is highly desirable. One promising strategy involves electrically modulating the Rashba spin orbital coupling effect in materials. A semiconductor with high sensitivity in its Rashba constant to external electric fields holds great potential for short channel lengths in spin field-effect transistors, which is crucial for preserving spin coherence and enhancing integration density. Hence, two-dimensional (2D) Rashba semiconductors with large Rashba constants and significant electric field responses are highly desirable. Herein, by employing first-principles calculations, we design a thermodynamically stable 2D Rashba semiconductor, YSbTe3, which possesses an indirect band gap of 1.04 eV, a large Rashba constant of 1.54 eV·Å and a strong electric field response of up to 4.80 e·Å2. In particular, the Rashba constant dependence on the electric field shows an unusual nonlinear relationship. At the same time, YSbTe3 has been identified as a 2D ferroelectric material with a moderate polarization switching energy barrier (~ 0.33 eV per formula). By changing the electric polarization direction, the Rashba spin texture of YSbTe3 can be reversed. These outstanding properties make the ferroelectric Rashba semiconductor YSbTe3 quite promising for spintronic applications.
To date, monolayer YSbTe 3 has been identified as a ferroelectric Rashba semiconductor with the largest electric field response.
[1] |
Chen J J, Wu K, Hu W, et al. Spin–orbit coupling in 2D semiconductors: a theoretical perspective. J. Phys. Chem. Lett., 2021, 12 (51): 12256–12268. DOI: 10.1021/acs.jpclett.1c03662
|
[2] |
Koo H C, Kim S B, Kim H, et al. Rashba effect in functional spintronic devices. Adv. Mater., 2020, 32 (51): 2002117. DOI: 10.1002/adma.202002117
|
[3] |
Lee S, Koike H, Goto M, et al. Synthetic Rashba spin–orbit system using a silicon metal-oxide semiconductor. Nat. Mater., 2021, 20 (9): 1228–1232. DOI: 10.1038/s41563-021-01026-y
|
[4] |
Lin W, Li L, Doğan F, et al. Interface-based tuning of Rashba spin-orbit interaction in asymmetric oxide heterostructures with 3 d electrons. Nat. Commun., 2019, 10 (1): 3052. DOI: 10.1038/s41467-019-10961-z
|
[5] |
Lyu J K, Ji W X, Zhang S F, et al. Strain-tuned topological insulator and Rashba-induced anisotropic momentum-locked Dirac cones in two-dimensional SeTe monolayers. ACS Appl. Mater. Interfaces, 2018, 10 (50): 43962–43969. DOI: 10.1021/acsami.8b18582
|
[6] |
Ciocys S T, Maksimovic N, Analytis J G, et al. Driving ultrafast spin and energy modulation in quantum well states via photo-induced electric fields. npj Quantum Mater., 2022, 7 (1): 79. DOI: 10.1038/s41535-022-00490-2
|
[7] |
Jolie W, Hung T C, Niggli L, et al. Creating tunable quantum corrals on a Rashba surface alloy. ACS Nano, 2022, 16 (3): 4876–4883. DOI: 10.1021/acsnano.2c00467
|
[8] |
Lafalce E, Amerling E, Yu Z G, et al. Rashba splitting in organic–inorganic lead–halide perovskites revealed through two-photon absorption spectroscopy. Nat. Commun., 2022, 13 (1): 483. DOI: 10.1038/s41467-022-28127-9
|
[9] |
Lee S, Kwon Y K. Unveiling giant hidden rashba effects in two-dimensional Si2Bi2. npj 2D Mater. Appl., 2020, 4 (1): 45. DOI: 10.1038/s41699-020-00180-2
|
[10] |
Chen J J, Wu K, Hu W, et al. Tunable Rashba spin splitting in two-dimensional polar perovskites. J. Phys. Chem. Lett., 2021, 12 (7): 1932–1939. DOI: 10.1021/acs.jpclett.0c03668
|
[11] |
Datta S, Das B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett., 1990, 56 (7): 665–667. DOI: 10.1063/1.102730
|
[12] |
Park Y H, Choi J W, Kim H J, et al. Complementary spin transistor using a quantum well channel. Sci. Rep., 2017, 7 (1): 46671. DOI: 10.1038/srep46671
|
[13] |
Chuang P, Ho S C, Smith L W, et al. All-electric all-semiconductor spin field-effect transistors. Nat. Nanotechnol., 2015, 10 (1): 35–39. DOI: 10.1038/nnano.2014.296
|
[14] |
Fu X M, Jia C, Sheng L, et al. Bipolar Rashba semiconductors: a class of nonmagnetic materials for electrical spin manipulation. J. Phys. Chem. Lett., 2023, 14 (50): 11292–11297. DOI: 10.1021/acs.jpclett.3c02917
|
[15] |
Chen J J, Wu K, Hu W, et al. High-throughput inverse design for 2D ferroelectric Rashba semiconductors. J. Am. Chem. Soc., 2022, 144 (43): 20035–20046. DOI: 10.1021/jacs.2c08827
|
[16] |
Song Q, Zhang H R, Su T, et al. Observation of inverse Edelstein effect in Rashba-split 2DEG between SrTiO3 and LaAlO3 at room temperature. Sci. Adv., 2017, 3 (3): e1602312. DOI: 10.1126/sciadv.1602312
|
[17] |
Qu J, Han X, Sakamoto S, et al. Reversal of spin-polarization near the fermi level of the Rashba semiconductor BiTeCl. npj Quantum Mater., 2023, 8 (1): 13. DOI: 10.1038/s41535-023-00546-x
|
[18] |
Nakayama H, Kanno Y, An H, et al. Rashba-Edelstein magnetoresistance in metallic heterostructures. Phys. Rev. Lett., 2016, 117 (11): 116602. DOI: 10.1103/PhysRevLett.117.116602
|
[19] |
Wu K, Chen J J, Ma H H, et al. Two-dimensional giant tunable Rashba semiconductors with two-atom-thick buckled honeycomb structure. Nano Lett., 2021, 21 (1): 740–746. DOI: 10.1021/acs.nanolett.0c04429
|
[20] |
Liu B C, Gao H X, Meng C Y, et al. The impact of an external electric field on the Rashba effect in two-dimensional hybrid perovskites. J. Mater. Chem. C, 2023, 11 (30): 10370–10376. DOI: 10.1039/D3TC01575K
|
[21] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54 (16): 11169–11186. DOI: 10.1103/PhysRevB.54.11169
|
[22] |
Blöchl P E. Projector augmented-wave method. Phys. Rev. B, 1994, 50 (24): 17953–17979. DOI: 10.1103/PhysRevB.50.17953
|
[23] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77 (18): 3865–3868. DOI: 10.1103/PhysRevLett.77.3865
|
[24] |
Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132 (15): 154104. DOI: 10.1063/1.3382344
|
[25] |
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118 (18): 8207–8215. DOI: 10.1063/1.1564060
|
[26] |
Alfè D. PHON: A program to calculate phonons using the small displacement method. Comput. Phys. Commun., 2009, 180 (12): 2622–2633. DOI: 10.1016/j.cpc.2009.03.010
|
[27] |
Togo A, Chaput L, Tadano T, et al. Implementation strategies in phonopy and phono3py. J. Phys. : Condens. Matter, 2023, 35 (35): 353001. DOI: 10.1088/1361-648X/acd831
|
[28] |
Sheppard D, Xiao P, Chemelewski W, et al. A generalized solid-state nudged elastic band method. J. Chem. Phys., 2012, 136 (7): 074103. DOI: 10.1063/1.3684549
|
[29] |
Ali M S, Das S, Abed Y F, et al. Lead-free CsSnCl3 perovskite nanocrystals: rapid synthesis, experimental characterization and DFT simulations. Phys. Chem. Chem. Phys., 2021, 23 (38): 22184–22198. DOI: 10.1039/D1CP02666F
|
[30] |
Bahramy M S, Arita R, Nagaosa N. Origin of giant bulk Rashba splitting: Application to BiTeI. Phys. Rev. B, 2011, 84 (4): 041202. DOI: 10.1103/PhysRevB.84.041202
|
[31] |
Gupta S, Yakobson B I. What dictates Rashba splitting in 2D van der Waals heterobilayers. J. Am. Chem. Soc., 2021, 143 (9): 3503–3508. DOI: 10.1021/jacs.0c12809
|
[32] |
Wu Q, Cao L, Ang Y S, et al. Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field. Appl. Phys. Lett., 2021, 118 (11): 113102. DOI: 10.1063/5.0044431
|
[33] |
Nourbakhsh A, Agarwal T K, Klekachev A, et al. Chemically enhanced double-gate bilayer graphene field-effect transistor with neutral channel for logic applications. Nanotechnology, 2014, 25 (34): 345203. DOI: 10.1088/0957-4484/25/34/345203
|