[1] |
Chen J J, Wu K, Hu W, et al. Spin–orbit coupling in 2D semiconductors: a theoretical perspective. J. Phys. Chem. Lett., 2021, 12 (51): 12256–12268. doi: 10.1021/acs.jpclett.1c03662
|
[2] |
Koo H C, Kim S B, Kim H, et al. Rashba effect in functional spintronic devices. Adv. Mater., 2020, 32 (51): 2002117. doi: 10.1002/adma.202002117
|
[3] |
Lee S, Koike H, Goto M, et al. Synthetic Rashba spin–orbit system using a silicon metal-oxide semiconductor. Nat. Mater., 2021, 20 (9): 1228–1232. doi: 10.1038/s41563-021-01026-y
|
[4] |
Lin W, Li L, Doğan F, et al. Interface-based tuning of Rashba spin-orbit interaction in asymmetric oxide heterostructures with 3 d electrons. Nat. Commun., 2019, 10 (1): 3052. doi: 10.1038/s41467-019-10961-z
|
[5] |
Lyu J K, Ji W X, Zhang S F, et al. Strain-tuned topological insulator and Rashba-induced anisotropic momentum-locked Dirac cones in two-dimensional SeTe monolayers. ACS Appl. Mater. Interfaces, 2018, 10 (50): 43962–43969. doi: 10.1021/acsami.8b18582
|
[6] |
Ciocys S T, Maksimovic N, Analytis J G, et al. Driving ultrafast spin and energy modulation in quantum well states via photo-induced electric fields. npj Quantum Mater., 2022, 7 (1): 79. doi: 10.1038/s41535-022-00490-2
|
[7] |
Jolie W, Hung T C, Niggli L, et al. Creating tunable quantum corrals on a Rashba surface alloy. ACS Nano, 2022, 16 (3): 4876–4883. doi: 10.1021/acsnano.2c00467
|
[8] |
Lafalce E, Amerling E, Yu Z G, et al. Rashba splitting in organic–inorganic lead–halide perovskites revealed through two-photon absorption spectroscopy. Nat. Commun., 2022, 13 (1): 483. doi: 10.1038/s41467-022-28127-9
|
[9] |
Lee S, Kwon Y K. Unveiling giant hidden rashba effects in two-dimensional Si2Bi2. npj 2D Mater. Appl., 2020, 4 (1): 45. doi: 10.1038/s41699-020-00180-2
|
[10] |
Chen J J, Wu K, Hu W, et al. Tunable Rashba spin splitting in two-dimensional polar perovskites. J. Phys. Chem. Lett., 2021, 12 (7): 1932–1939. doi: 10.1021/acs.jpclett.0c03668
|
[11] |
Datta S, Das B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett., 1990, 56 (7): 665–667. doi: 10.1063/1.102730
|
[12] |
Park Y H, Choi J W, Kim H J, et al. Complementary spin transistor using a quantum well channel. Sci. Rep., 2017, 7 (1): 46671. doi: 10.1038/srep46671
|
[13] |
Chuang P, Ho S C, Smith L W, et al. All-electric all-semiconductor spin field-effect transistors. Nat. Nanotechnol., 2015, 10 (1): 35–39. doi: 10.1038/nnano.2014.296
|
[14] |
Fu X M, Jia C, Sheng L, et al. Bipolar Rashba semiconductors: a class of nonmagnetic materials for electrical spin manipulation. J. Phys. Chem. Lett., 2023, 14 (50): 11292–11297. doi: 10.1021/acs.jpclett.3c02917
|
[15] |
Chen J J, Wu K, Hu W, et al. High-throughput inverse design for 2D ferroelectric Rashba semiconductors. J. Am. Chem. Soc., 2022, 144 (43): 20035–20046. doi: 10.1021/jacs.2c08827
|
[16] |
Song Q, Zhang H R, Su T, et al. Observation of inverse Edelstein effect in Rashba-split 2DEG between SrTiO3 and LaAlO3 at room temperature. Sci. Adv., 2017, 3 (3): e1602312. doi: 10.1126/sciadv.1602312
|
[17] |
Qu J, Han X, Sakamoto S, et al. Reversal of spin-polarization near the fermi level of the Rashba semiconductor BiTeCl. npj Quantum Mater., 2023, 8 (1): 13. doi: 10.1038/s41535-023-00546-x
|
[18] |
Nakayama H, Kanno Y, An H, et al. Rashba-Edelstein magnetoresistance in metallic heterostructures. Phys. Rev. Lett., 2016, 117 (11): 116602. doi: 10.1103/PhysRevLett.117.116602
|
[19] |
Wu K, Chen J J, Ma H H, et al. Two-dimensional giant tunable Rashba semiconductors with two-atom-thick buckled honeycomb structure. Nano Lett., 2021, 21 (1): 740–746. doi: 10.1021/acs.nanolett.0c04429
|
[20] |
Liu B C, Gao H X, Meng C Y, et al. The impact of an external electric field on the Rashba effect in two-dimensional hybrid perovskites. J. Mater. Chem. C, 2023, 11 (30): 10370–10376. doi: 10.1039/D3TC01575K
|
[21] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54 (16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
|
[22] |
Blöchl P E. Projector augmented-wave method. Phys. Rev. B, 1994, 50 (24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
|
[23] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77 (18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
|
[24] |
Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132 (15): 154104. doi: 10.1063/1.3382344
|
[25] |
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118 (18): 8207–8215. doi: 10.1063/1.1564060
|
[26] |
Alfè D. PHON: A program to calculate phonons using the small displacement method. Comput. Phys. Commun., 2009, 180 (12): 2622–2633. doi: 10.1016/j.cpc.2009.03.010
|
[27] |
Togo A, Chaput L, Tadano T, et al. Implementation strategies in phonopy and phono3py. J. Phys. : Condens. Matter, 2023, 35 (35): 353001. doi: 10.1088/1361-648X/acd831
|
[28] |
Sheppard D, Xiao P, Chemelewski W, et al. A generalized solid-state nudged elastic band method. J. Chem. Phys., 2012, 136 (7): 074103. doi: 10.1063/1.3684549
|
[29] |
Ali M S, Das S, Abed Y F, et al. Lead-free CsSnCl3 perovskite nanocrystals: rapid synthesis, experimental characterization and DFT simulations. Phys. Chem. Chem. Phys., 2021, 23 (38): 22184–22198. doi: 10.1039/D1CP02666F
|
[30] |
Bahramy M S, Arita R, Nagaosa N. Origin of giant bulk Rashba splitting: Application to BiTeI. Phys. Rev. B, 2011, 84 (4): 041202. doi: 10.1103/PhysRevB.84.041202
|
[31] |
Gupta S, Yakobson B I. What dictates Rashba splitting in 2D van der Waals heterobilayers. J. Am. Chem. Soc., 2021, 143 (9): 3503–3508. doi: 10.1021/jacs.0c12809
|
[32] |
Wu Q, Cao L, Ang Y S, et al. Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field. Appl. Phys. Lett., 2021, 118 (11): 113102. doi: 10.1063/5.0044431
|
[33] |
Nourbakhsh A, Agarwal T K, Klekachev A, et al. Chemically enhanced double-gate bilayer graphene field-effect transistor with neutral channel for logic applications. Nanotechnology, 2014, 25 (34): 345203. doi: 10.1088/0957-4484/25/34/345203
|
JUSTC-2024-0004 Supporting information.docx |
[1] |
Chen J J, Wu K, Hu W, et al. Spin–orbit coupling in 2D semiconductors: a theoretical perspective. J. Phys. Chem. Lett., 2021, 12 (51): 12256–12268. doi: 10.1021/acs.jpclett.1c03662
|
[2] |
Koo H C, Kim S B, Kim H, et al. Rashba effect in functional spintronic devices. Adv. Mater., 2020, 32 (51): 2002117. doi: 10.1002/adma.202002117
|
[3] |
Lee S, Koike H, Goto M, et al. Synthetic Rashba spin–orbit system using a silicon metal-oxide semiconductor. Nat. Mater., 2021, 20 (9): 1228–1232. doi: 10.1038/s41563-021-01026-y
|
[4] |
Lin W, Li L, Doğan F, et al. Interface-based tuning of Rashba spin-orbit interaction in asymmetric oxide heterostructures with 3 d electrons. Nat. Commun., 2019, 10 (1): 3052. doi: 10.1038/s41467-019-10961-z
|
[5] |
Lyu J K, Ji W X, Zhang S F, et al. Strain-tuned topological insulator and Rashba-induced anisotropic momentum-locked Dirac cones in two-dimensional SeTe monolayers. ACS Appl. Mater. Interfaces, 2018, 10 (50): 43962–43969. doi: 10.1021/acsami.8b18582
|
[6] |
Ciocys S T, Maksimovic N, Analytis J G, et al. Driving ultrafast spin and energy modulation in quantum well states via photo-induced electric fields. npj Quantum Mater., 2022, 7 (1): 79. doi: 10.1038/s41535-022-00490-2
|
[7] |
Jolie W, Hung T C, Niggli L, et al. Creating tunable quantum corrals on a Rashba surface alloy. ACS Nano, 2022, 16 (3): 4876–4883. doi: 10.1021/acsnano.2c00467
|
[8] |
Lafalce E, Amerling E, Yu Z G, et al. Rashba splitting in organic–inorganic lead–halide perovskites revealed through two-photon absorption spectroscopy. Nat. Commun., 2022, 13 (1): 483. doi: 10.1038/s41467-022-28127-9
|
[9] |
Lee S, Kwon Y K. Unveiling giant hidden rashba effects in two-dimensional Si2Bi2. npj 2D Mater. Appl., 2020, 4 (1): 45. doi: 10.1038/s41699-020-00180-2
|
[10] |
Chen J J, Wu K, Hu W, et al. Tunable Rashba spin splitting in two-dimensional polar perovskites. J. Phys. Chem. Lett., 2021, 12 (7): 1932–1939. doi: 10.1021/acs.jpclett.0c03668
|
[11] |
Datta S, Das B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett., 1990, 56 (7): 665–667. doi: 10.1063/1.102730
|
[12] |
Park Y H, Choi J W, Kim H J, et al. Complementary spin transistor using a quantum well channel. Sci. Rep., 2017, 7 (1): 46671. doi: 10.1038/srep46671
|
[13] |
Chuang P, Ho S C, Smith L W, et al. All-electric all-semiconductor spin field-effect transistors. Nat. Nanotechnol., 2015, 10 (1): 35–39. doi: 10.1038/nnano.2014.296
|
[14] |
Fu X M, Jia C, Sheng L, et al. Bipolar Rashba semiconductors: a class of nonmagnetic materials for electrical spin manipulation. J. Phys. Chem. Lett., 2023, 14 (50): 11292–11297. doi: 10.1021/acs.jpclett.3c02917
|
[15] |
Chen J J, Wu K, Hu W, et al. High-throughput inverse design for 2D ferroelectric Rashba semiconductors. J. Am. Chem. Soc., 2022, 144 (43): 20035–20046. doi: 10.1021/jacs.2c08827
|
[16] |
Song Q, Zhang H R, Su T, et al. Observation of inverse Edelstein effect in Rashba-split 2DEG between SrTiO3 and LaAlO3 at room temperature. Sci. Adv., 2017, 3 (3): e1602312. doi: 10.1126/sciadv.1602312
|
[17] |
Qu J, Han X, Sakamoto S, et al. Reversal of spin-polarization near the fermi level of the Rashba semiconductor BiTeCl. npj Quantum Mater., 2023, 8 (1): 13. doi: 10.1038/s41535-023-00546-x
|
[18] |
Nakayama H, Kanno Y, An H, et al. Rashba-Edelstein magnetoresistance in metallic heterostructures. Phys. Rev. Lett., 2016, 117 (11): 116602. doi: 10.1103/PhysRevLett.117.116602
|
[19] |
Wu K, Chen J J, Ma H H, et al. Two-dimensional giant tunable Rashba semiconductors with two-atom-thick buckled honeycomb structure. Nano Lett., 2021, 21 (1): 740–746. doi: 10.1021/acs.nanolett.0c04429
|
[20] |
Liu B C, Gao H X, Meng C Y, et al. The impact of an external electric field on the Rashba effect in two-dimensional hybrid perovskites. J. Mater. Chem. C, 2023, 11 (30): 10370–10376. doi: 10.1039/D3TC01575K
|
[21] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54 (16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
|
[22] |
Blöchl P E. Projector augmented-wave method. Phys. Rev. B, 1994, 50 (24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
|
[23] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77 (18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
|
[24] |
Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132 (15): 154104. doi: 10.1063/1.3382344
|
[25] |
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118 (18): 8207–8215. doi: 10.1063/1.1564060
|
[26] |
Alfè D. PHON: A program to calculate phonons using the small displacement method. Comput. Phys. Commun., 2009, 180 (12): 2622–2633. doi: 10.1016/j.cpc.2009.03.010
|
[27] |
Togo A, Chaput L, Tadano T, et al. Implementation strategies in phonopy and phono3py. J. Phys. : Condens. Matter, 2023, 35 (35): 353001. doi: 10.1088/1361-648X/acd831
|
[28] |
Sheppard D, Xiao P, Chemelewski W, et al. A generalized solid-state nudged elastic band method. J. Chem. Phys., 2012, 136 (7): 074103. doi: 10.1063/1.3684549
|
[29] |
Ali M S, Das S, Abed Y F, et al. Lead-free CsSnCl3 perovskite nanocrystals: rapid synthesis, experimental characterization and DFT simulations. Phys. Chem. Chem. Phys., 2021, 23 (38): 22184–22198. doi: 10.1039/D1CP02666F
|
[30] |
Bahramy M S, Arita R, Nagaosa N. Origin of giant bulk Rashba splitting: Application to BiTeI. Phys. Rev. B, 2011, 84 (4): 041202. doi: 10.1103/PhysRevB.84.041202
|
[31] |
Gupta S, Yakobson B I. What dictates Rashba splitting in 2D van der Waals heterobilayers. J. Am. Chem. Soc., 2021, 143 (9): 3503–3508. doi: 10.1021/jacs.0c12809
|
[32] |
Wu Q, Cao L, Ang Y S, et al. Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field. Appl. Phys. Lett., 2021, 118 (11): 113102. doi: 10.1063/5.0044431
|
[33] |
Nourbakhsh A, Agarwal T K, Klekachev A, et al. Chemically enhanced double-gate bilayer graphene field-effect transistor with neutral channel for logic applications. Nanotechnology, 2014, 25 (34): 345203. doi: 10.1088/0957-4484/25/34/345203
|