ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Life Sciences 29 September 2023

Cryopreservation of oocytes: history, achievements and future

Cite this:
https://doi.org/10.52396/JUSTC-2023-0072
More Information
  • Author Bio:

    Shiyu Zhao is a doctoral candidate of the Department of Electronic Engineering and Information Sciences, University of Science and Technology of China, under the supervision of Prof. Gang Zhao. Her research focuses on oocyte cryopreservation

    Gang Zhao obtained his Ph.D. degree from the University of Science and Technology of China. He is currently a Professor at the University of Science and Technology of China. His current research focuses on cryo-biomedical engineering, micro- and nano-technologies, and biosensors

  • Corresponding author: E-mail: zhaog@ustc.edu.cn
  • Received Date: 25 April 2023
  • Accepted Date: 26 June 2023
  • Available Online: 29 September 2023
  • There have been increasing requirements for women’s fertility preservation due to oncological and nononcological reasons in recent years, and meeting these demands will be a hot topic in the coming years. Oocyte cryopreservation is a workable option for preserving women’s fertility, and great advances have already been made and much progress has been made in mammalian gene banking and human oocyte banks. In this paper, we systematically introduce the history of oocyte cryopreservation and vitrification technology and highlight the vitrification carrier. Furthermore, we summarize the fundamentals of oocyte vitrification and discuss the effects of vitrification on oocyte quality. Strategies to improve the effect of oocyte cryopreservation are also proposed. At the end of this review, we conclude oocyte cryopreservation and outline future perspectives.
    Schematic represents the history of human and mouse oocytes cryopreservation, the achievements of oocytes cryopreservation and strategies to improve the efficiency of oocytes cryopreservation.
    There have been increasing requirements for women’s fertility preservation due to oncological and nononcological reasons in recent years, and meeting these demands will be a hot topic in the coming years. Oocyte cryopreservation is a workable option for preserving women’s fertility, and great advances have already been made and much progress has been made in mammalian gene banking and human oocyte banks. In this paper, we systematically introduce the history of oocyte cryopreservation and vitrification technology and highlight the vitrification carrier. Furthermore, we summarize the fundamentals of oocyte vitrification and discuss the effects of vitrification on oocyte quality. Strategies to improve the effect of oocyte cryopreservation are also proposed. At the end of this review, we conclude oocyte cryopreservation and outline future perspectives.
    • We introduce the history of oocyte cryopreservation.
    • We summarize the fundamentals of oocyte vitrification and discuss the effects of vitrification on oocyte quality.
    • We propose strategies to improve the effect of oocyte cryopreservation.

  • loading
  • [1]
    Chung K, Donnez J, Ginsburg E, et al. Emergency IVF versus ovarian tissue cryopreservation: decision making in fertility preservation for female cancer patients. Fertil. Steril., 2013, 99 (6): 1534–1542. doi: 10.1016/j.fertnstert.2012.11.057
    [2]
    Fisch B, Abir R. Female fertility preservation: past, present and future. Reproduction, 2018, 156 (1): F11–F27. doi: 10.1530/REP-17-0483
    [3]
    Kelsey T W, Hua C H, Wyatt A, et al. A predictive model of the effect of therapeutic radiation on the human ovary. PLoS ONE, 2022, 17 (11): e0277052. doi: 10.1371/journal.pone.0277052
    [4]
    Anderson R A, Brewster D H, Wood R, et al. The impact of cancer on subsequent chance of pregnancy: a population-based analysis. Hum. Reprod., 2018, 33: 1281–1290. doi: 10.1093/humrep/dey216
    [5]
    Ciarmatori S, Gaston R V. Freezing techniques as fertility preservation strategies: a narrative review. Obstet. Gynecol. Int. J., 2022, 13 (6): 395‒400. doi: 10.15406/ogij.2022.13.00683
    [6]
    Smith G D, Takayama S. Application of microfluidic technologies to human assisted reproduction. Mol. Hum. Reprod., 2017, 23 (4): 257–268. doi: 10.1093/molehr/gaw076
    [7]
    Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature, 1983, 305: 707–709. doi: 10.1038/305707a0
    [8]
    Rienzi L, Ubaldi F M. Oocyte versus embryo cryopreservation for fertility preservation in cancer patients: guaranteeing a women’s autonomy. J. Assist. Reprod. Genet., 2015, 32: 1195–1196. doi: 10.1007/s10815-015-0507-1
    [9]
    Argyle C E, Harper J C, Davies M C. Oocyte cryopreservation: where are we now. Hum. Reprod. Update, 2016, 22 (4): 440–449. doi: 10.1093/humupd/dmw007
    [10]
    Liang T, Motan T. Mature oocyte cryopreservation for fertility preservation. In: Karimi-Busheri F, Weinfeld M, editors. Biobanking and Cryopreservation of Stem Cells. Advances in Experimental Medicine and Biology, vol 951. Cham, Switzerland: Springer, 2016:155−161.
    [11]
    Johnson J A, Tough S. SOGC GENETICS COMMITTEE. Delayed child-bearing. J. Obstet. Gynaecol. Can., 2012, 34 (1): 80–93. doi: 10.1016/S1701-2163(16)35138-6
    [12]
    Clark N A, Swain J E. Oocyte cryopreservation: searching for novel improvement strategies. J. Assist. Reprod. Genet., 2013, 30 (7): 865–875. doi: 10.1007/s10815-013-0028-8
    [13]
    Murray K A, Gibson M I. Chemical approaches to cryopreservation. Nat. Rev. Chem., 2022, 6 (8): 579–593. doi: 10.1038/s41570-022-00407-4
    [14]
    Steponkus P L, Myers S P, Lynch D V, et al. Cryopreservation of Drosophila melanogaster embryos. Nature, 1990, 345 (6271): 170–172. doi: 10.1038/345170a0
    [15]
    Chian R C, Wang Y, Li Y R. Oocyte vitrification: advances, progress and future goals. J. Assist. Reprod. Genet., 2014, 31 (4): 411–420. doi: 10.1007/s10815-014-0180-9
    [16]
    Oktay K, Cil A P, Bang H. Efficiency of oocyte cryopreservation: a metaanalysis. Fertil. Steril., 2006, 86: 70–80. doi: 10.1016/j.fertnstert.2006.03.017
    [17]
    Massie I, Selden C, Hodgson H, et al. GMP cryopreservation of large volumes of cells for regenerative medicine: Active control of the freezing process. Tissue Eng. Part. C Methods, 2014, 20 (9): 693–702. doi: 10.1089/ten.tec.2013.0571
    [18]
    Desrosiers P, Légaré C, Leclerc P, et al. Membranous and structural damage that occur during cryopreservation of human sperm may be time-related events. Fertil. Steril., 2006, 85 (6): 1744–1752. doi: 10.1016/j.fertnstert.2005.11.046
    [19]
    Fabbri R, Porcu E, Marsella T, et al. Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum. Reprod., 2001, 16 (3): 411–416. doi: 10.1093/humrep/16.3.411
    [20]
    Polge C, Smith A U, Parkes A S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 1949, 164 (4172): 666. doi: 10.1038/164666a0
    [21]
    Burks J L, Davis M E, Bakken A H, et al. Morphologic evaluation of frozen rabbit and human ova. Fertil. Steril., 1965, 16 (5): 638–641. doi: 10.1016/S0015-0282(16)35710-7
    [22]
    Parkening T A, Tsunoda Y, Chang M C. Effects of various low temperatures, cryoprotective agents and cooling rates on the survival, fertilizability and development of frozen-thawed mouse eggs. J. Exp. Zool., 1976, 197 (3): 369–374. doi: 10.1002/jez.1401970310
    [23]
    Tsunoda Y, Parkening T A, Chang M C. In vitro fertilization of mouse and hamster eggs after freezing and thawing. Experientia, 1976, 32 (2): 223–224. doi: 10.1007/BF01937777
    [24]
    Chen C. Pregnancy after human oocyte cryopreservation. Lancet, 1986, 1: 884–886. doi: 10.1016/s0140-6736(86)90989-x
    [25]
    Stachecki J J, Cohen J. An overview of oocyte cryopreservation. Reprod. Biomed. Online, 2004, 9: 152–163. doi: 10.1016/S1472-6483(10)62124-4
    [26]
    Bernard A, Fuller B J. Cryopreservation of human oocytes: a review of current problems and perspectives. Hum. Reprod. Update, 1996, 2: 193–207. doi: 10.1093/humupd/2.3.193
    [27]
    Wowk B. Thermodynamic aspects of vitrification. Cryobiology, 2010, 60 (1): 11–22. doi: 10.1016/j.cryobiol.2009.05.007
    [28]
    Stiles W. On the cause of cold death of plants. Protoplasma, 1930, 9: 459–468. doi: 10.1007/BF01943364
    [29]
    Luyet B J. The vitrification of organic colloids and protoplasm. Biodynamica, 1937, 1 (29): 1–14.
    [30]
    Rall W F, Fahy G M. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature, 1985, 313 (6003): 573–575. doi: 10.1038/313573a0
    [31]
    Nagy Z P, Shapiro D, Chang C C. Vitrification of the human embryo: a more efficient and safer in vitro fertilization treatment. Fertil. Steril., 2020, 113 (2): 241–247. doi: 10.1016/j.fertnstert.2019.12.009
    [32]
    Nakagata N. High survival rate of unfertilized mouse oocytes after vitrification. J. Reprod. Fertil., 1989, 87 (2): 479–483. doi: 10.1530/jrf.0.0870479
    [33]
    Kuleshova L, Gianaroli L, Magli C, et al. Birth following vitrification of a small number of human oocytes: Case Report. Hum. Reprod., 1999, 14 (12): 3077–3079. doi: 10.1093/humrep/14.12.3077
    [34]
    Benagiano G, Gianaroli L. The new Italian IVF legislation. Reprod. Biomed. Online, 2004, 9: 117–125. doi: 10.1016/S1472-6483(10)62118-9
    [35]
    Katayama K P, Stehlik J, Kuwayama M, et al. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil. Steril., 2003, 80: 223–224. doi: 10.1016/s0015-0282(03)00551-x
    [36]
    Kuwayama M, Vajta G, Kato O, et al. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online, 2005, 11: 300–308. doi: 10.1016/S1472-6483(10)60837-1
    [37]
    Martino A, Songsasen N, Leibo S P. Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol. Reprod., 1996, 54 (5): 1059–1069. doi: 10.1095/biolreprod54.5.1059
    [38]
    Porcu E, Ciotti P, Venturoli S. Handbook of Human Oocyte Cryopreservation. Cambridge: Cambridge University Press, 2012.
    [39]
    Cao Y X, Xing Q, Li L, et al. Comparison of survival and embryonic development in human oocytes cryopreserved by slow-freezing and vitrification. Fertil. Steril., 2009, 92 (4): 1306–1311. doi: 10.1016/j.fertnstert.2008.08.069
    [40]
    Smith G D, Serafini P C, Fioravanti J, et al. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil. Steril., 2010, 94: 2088–2095. doi: 10.1016/j.fertnstert.2009.12.065
    [41]
    Gook D A, Schiewe M C, Osborn S M, et al. Intracytoplasmic sperm injection and embryo development of human oocytes cryopreserved using 1,2-propanediol. Hum. Reprod., 1995, 10 (10): 2637–2641. doi: 10.1093/oxfordjournals.humrep.a135759
    [42]
    Gruneberg A K, Graham L A, Eves R, et al. Ice recrystallization inhibition activity varies with ice-binding protein type and does not correlate with thermal hysteresis. Cryobiology, 2021, 99: 28–39. doi: 10.1016/j.cryobiol.2021.01.017
    [43]
    Zhang Z, Mu Y, Ding D, et al. Melatonin improves the effect of cryopreservation on human oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma. J. Pineal. Res., 2021, 70 (2): e12707. doi: 10.1111/jpi.12707
    [44]
    Cao B, Qin J, Pan B, et al. Oxidative stress and oocyte cryopreservation: Recent advances in mitigation strategies involving antioxidants. Cells, 2022, 11 (22): 3573. doi: 10.3390/cells11223573
    [45]
    Demirci U, Montesano G. Cell encapsulating droplet vitrification. Lab Chip, 2007, 7 (11): 1428–1433. doi: 10.1039/b705809h
    [46]
    Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology, 2007, 67 (1): 73–80. doi: 10.1016/j.theriogenology.2006.09.014
    [47]
    He X, Park E Y, Fowler A, et al. Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: a study using murine embryonic stem cells. Cryobiology, 2008, 56 (3): 223–232. doi: 10.1016/j.cryobiol.2008.03.005
    [48]
    DeVries A L, Wohlschlag D E. Freezing resistance in some Antarctic fishes. Science, 1969, 163 (3871): 1073–1075. doi: 10.1126/science.163.3871.1073
    [49]
    Balboula A Z, Schindler K, Kotani T, et al. Vitrification-induced activation of lysosomal cathepsin B perturbs spindle assembly checkpoint function in mouse oocytes. Mol. Hum. Reprod., 2020, 26 (9): 689–701. doi: 10.1093/molehr/gaaa051
    [50]
    Glujovsky D, Riestra B, Sueldo C, et al. Vitrification versus slow freezing for women undergoing oocyte cryopreservation. Cochrane Database Syst. Rev., 2014 (9): CD010047. doi: 10.1002/14651858.CD010047.pub2
    [51]
    Cobo A, Romero J L, Pérez S, et al. Storage of human oocytes in the vapor phase of nitrogen. Fertil. Steril., 2010, 94 (5): 1903–1907. doi: 10.1016/j.fertnstert.2009.10.042
    [52]
    Paffoni A, Guarneri C, Ferrari S, et al. Effects of two vitrification protocols on the developmental potential of human mature oocytes. Reprod. Biomed. Online, 2011, 22 (3): 292–298. doi: 10.1016/j.rbmo.2010.11.004
    [53]
    Bonetti A, Cervi M, Tomei F, et al. Ultrastructural evaluation of human metaphase II oocytes after vitrification: closed versus open devices. Fertil. Steril., 2011, 95: 928–935. doi: 10.1016/j.fertnstert.2010.08.027
    [54]
    Pujol A, Zamora M J, Obradors A, et al. Comparison of two different oocyte vitrification methods: a prospective, paired study on the same genetic background and stimulation protocol. Hum. Reprod., 2019, 34 (6): 989–997. doi: 10.1093/humrep/dez045
    [55]
    Stoop D, De Munck N, Jansen E, et al. Clinical validation of a closed vitrification system in an oocyte-donation programme. Reprod. Biomed. Online, 2012, 24: 180–185. doi: 10.1016/j.rbmo.2011.10.015
    [56]
    De Munck N, Santos-Ribeiro S, Stoop D, et al. Open versus closed oocyte vitrification in an oocyte donation programme: a prospective randomized sibling oocyte study. Hum. Reprod., 2016, 31: 377–384. doi: 10.1093/humrep/dev321
    [57]
    Zhao G, Fu J. Microfluidics for cryopreservation. Biotechnol. Adv., 2017, 35 (2): 323–336. doi: 10.1016/j.biotechadv.2017.01.006
    [58]
    Gao D, Critser J K. Mechanisms of cryoinjury in living cells. ILAR J., 2000, 41 (4): 187–196. doi: 10.1093/ilar.41.4.187
    [59]
    Mazur P. Freezing of living cells: mechanisms and implications. Am. J. Physiol., 1984, 247: C125–C142. doi: 10.1152/ajpcell.1984.247.3.C125
    [60]
    Fahy G M, Wowk B. Principles of ice-free cryopreservation by vitrification. In: Wolkers W F, Oldenhof H, editors. Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 2180. New York: Humana, 2021:27–97.
    [61]
    Boutron P, Mehl P, Kaufmann A, et al. Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons I. Binary systems water-polyalcohol. Cryobiology, 1986, 23 (5): 453–469. doi: 10.1016/0011-2240(86)90031-3
    [62]
    Boutron P, Mehl P. Theoretical prediction of devitrification tendency: determination of critical warming rates without using finite expansions. Cryobiology, 1990, 27 (4): 359–377. doi: 10.1016/0011-2240(90)90015-V
    [63]
    Baudot A, Odagescu V. Thermal properties of ethylene glycol aqueous solutions. Cryobiology, 2004, 48 (3): 283–294. doi: 10.1016/j.cryobiol.2004.02.003
    [64]
    Liu Y, Bhattarai P, Dai Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev., 2019, 48 (7): 2053–2108. doi: 10.1039/C8CS00618K
    [65]
    Sathananthan A H, Trounson A, Freeman L. Morphology and fertilizability of frozen human oocytes. Gamete Res., 1987, 16: 343–354. doi: 10.1002/mrd.1120160408
    [66]
    Familiari G, Heyn R, Relucenti M, et al. Ultrastructural dynamics of human reproduction, from ovulation to fertilization and early embryo development. Int. Rev. Cytol., 2006, 249: 53–141. doi: 10.1016/S0074-7696(06)49002-1
    [67]
    Fuku E, Xia L, Downey B R. Ultrastructural changes in bovine oocytes cryopreserved by vitrification. Cryobiology, 1995, 32: 139–156. doi: 10.1006/cryo.1995.1013
    [68]
    Fuku E J, Liu J, Downey B R. In vitro viability and ultrastructural changes in bovine oocytes treated with a vitrification solution. Mol. Reprod. Dev., 1995, 40: 177–185. doi: 10.1002/mrd.1080400206
    [69]
    Hyttel P, Vajta G, Callesen H. Vitrification of bovine oocytes with the open pulled straw method: ultrastructural consequences. Mol. Reprod. Dev., 2000, 56: 80–88. doi: 10.1002/(SICI)1098-2795(200005)56:1<80::AID-MRD10>3.0.CO;2-U
    [70]
    Chang C C, Shapiro D B, Nagy Z P. The effects of vitrification on oocyte quality. Biol. Reprod., 2022, 106 (2): 316–327. doi: 10.1093/biolre/ioab239
    [71]
    Sathananthan A H, Selvaraj K, Girijashankar M L, et al. From oogonia to mature oocytes: inactivation of the maternal centrosome in humans. Microsc. Res. Tech., 2006, 69: 396–407. doi: 10.1002/jemt.20299
    [72]
    Sathananthan A H. Ultrastructure of human gametes, fertilization and embryos in assisted reproduction: a personal survey. Micron, 2013, 44: 1–20. doi: 10.1016/j.micron.2012.05.002
    [73]
    Carroll J, Depypere H, Matthews C D. Freeze-thaw-induced changes of the zona pellucida explains decreased rates of fertilization in frozen-thawed mouse oocytes. J. Reprod. Fertil., 1990, 90 (2): 547–553. doi: 10.1530/jrf.0.0900547
    [74]
    Tian S J, Yan C L, Yang H X, et al. Vitrification solution containing DMSO and EG can induce parthenogenetic activation of in vitro matured ovine oocytes and decrease sperm penetration. Anim. Reprod. Sci., 2007, 101: 365–371. doi: 10.1016/j.anireprosci.2007.01.007
    [75]
    Larman M G, Katz-Jaffe M G, Sheehan C B, et al. 1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum. Reprod., 2007, 22 (1): 250–259. doi: 10.1093/humrep/del319
    [76]
    Wang W H, Meng L, Hackett R J, et al. Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy. Hum. Reprod., 2001, 16 (11): 2374–2378. doi: 10.1093/humrep/16.11.2374
    [77]
    Pickering S J, Johnson M H. The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum. Reprod., 1987, 2: 207–216. doi: 10.1093/oxfordjournals.humrep.a136516
    [78]
    Van der Elst J, Van den Abbeel E, Jacobs R, et al. Effect of 1,2-propanediol and dimethylsulphoxide on the meiotic spindle of the mouse oocyte. Hum. Reprod., 1988, 3 (8): 960–967. doi: 10.1093/oxfordjournals.humrep.a136826
    [79]
    Schatten G, Simerly C, Schatten H. Microtubule configurations during fertilization, mitosis, and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc. Natl. Acad. Sci. U.S.A., 1985, 82 (12): 4152–4156. doi: 10.1073/pnas.82.12.4152
    [80]
    Coticchio G, Bromfield J J, Sciajno R, et al. Vitrification may increase the rate of chromosome misalignment in the metaphase II spindle of human mature oocytes. Reprod. Biomed. Online, 2009, 19 (Suppl3): 29–34. doi: 10.1016/s1472-6483(10)60281-7
    [81]
    Courtney B S, Lane M, Gardner D K. The Cryoloop facilitates re-vitrification of embryos at four successive stages of development without impairing embryo growth. Hum. Reprod., 2006, 21 (11): 2978–2984. doi: 10.1093/humrep/del253
    [82]
    Pereira R M, Marques C C. Animal oocyte and embryo cryopreservation. Cell Tissue Bank., 2008, 9 (4): 267–277. doi: 10.1007/s10561-008-9075-2
    [83]
    Leibo S P, Pool T B. The principal variables of cryopreservation: solutions, temperatures and rate changes. Fertil. Steril., 2011, 96 (2): 269–276. doi: 10.1016/j.fertnstert.2011.06.065
    [84]
    Joly C, Bchini O, Boulekbache H, et al. Effects of 1,2-propanediol on the cytoskeletal organization of the mouse oocyte. Hum. Reprod., 1992, 7 (3): 374–378. doi: 10.1093/oxfordjournals.humrep.a137654
    [85]
    Saunders K M, Parks J E. Effects of cryopreservation procedures on the cytology and fertilization rate of in vitro-matured bovine oocytes. Biol. Reprod., 1999, 61 (1): 178–187. doi: 10.1095/biolreprod61.1.178
    [86]
    Hunt C J. Cryopreservation: Vitrification and controlled rate cooling. In: Crook J, Ludwig T, editors. Stem Cell Banking. Methods in Molecular Biology, vol 1590. New York: Humana Press, 2017: 41–77.
    [87]
    Berthelot-Ricou A, Perrin J, di Giorgio C, et al. Genotoxicity assessment of mouse oocytes by comet assay before vitrification and after warming with three vitrification protocols. Fertil. Steril., 2013, 100: 882–888. doi: 10.1016/j.fertnstert.2013.05.025
    [88]
    Berthelot-Ricou A, Perrin J, di Giorgio C, et al. Assessment of 1,2-propanediol (PrOH) genotoxicity on mouse oocytes by comet assay. Fertil. Steril., 2011, 96: 1002–1007. doi: 10.1016/j.fertnstert.2011.07.1106
    [89]
    Hu W, Marchesi D, Qiao J, et al. Effect of slow freeze versus vitrification on the oocyte: an animal model. Fertil. Steril., 2012, 98 (3): 752–760.e3. doi: 10.1016/j.fertnstert.2012.05.037
    [90]
    Cheng K R, Fu X W, Zhang R N, et al. Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snrpn differentially methylated regions in mouse blastocysts. Fertil. Steril., 2014, 102 (4): 1183–1190.e3. doi: 10.1016/j.fertnstert.2014.06.037
    [91]
    Saenz-de-Juano M D, Peñaranda D S, Marco-Jiménez F, et al. Does vitrification alter the methylation pattern of OCT4 promoter in rabbit late blastocyst. Cryobiology, 2014, 69: 178–180. doi: 10.1016/j.cryobiol.2014.06.002
    [92]
    Spinaci M, Vallorani C, Bucci D, et al. Vitrification of pig oocytes induces changes in histone H4 acetylation and histone H3 lysine 9 methylation (H3K9). Vet. Res. Commun., 2012, 36: 165–171. doi: 10.1007/s11259-012-9527-9
    [93]
    Yan L Y, Yan J, Qiao J, et al. Effects of oocyte vitrification on histone modifications. Reprod. Fertil. Dev., 2010, 22: 920–925. doi: 10.1071/RD09312
    [94]
    Riesco M F, Robles V. Cryopreservation causes genetic and epigenetic changes in zebrafish genital ridges. PLoS ONE, 2013, 8: e67614. doi: 10.1371/journal.pone.0067614
    [95]
    Gualtieri R, Iaccarino M, Mollo V, et al. Slow cooling of human oocytes: ultrastructural injuries and apoptotic status. Fertil. Steril., 2009, 91 (4): 1023–1034. doi: 10.1016/j.fertnstert.2008.01.076
    [96]
    Lei T, Guo N, Liu J Q, et al. Vitrification of in vitro matured oocytes: effects on meiotic spindle configuration and mitochondrial function. Int. J. Clin. Exp. Pathol., 2014, 7 (3): 1159–1165.
    [97]
    Zander-Fox D, Cashman K S, Lane M. The presence of 1 mM glycine in vitrification solutions protects oocyte mitochondrial homeostasis and improves blastocyst development. J. Assist. Reprod. Genet., 2013, 30 (1): 107–116. doi: 10.1007/s10815-012-9898-4
    [98]
    Hornberger K, Yu G, McKenna D, et al. Cryopreservation of hematopoietic stem cells: Emerging assays, cryoprotectant agents, and technology to improve outcomes. Transfus. Med. Hemother., 2019, 46 (3): 188–196. doi: 10.1159/000496068
    [99]
    Best B P. Cryoprotectant toxicity: Facts, issues, and questions. Rejuvenation Res., 2015, 18 (5): 422–436. doi: 10.1089/rej.2014.1656
    [100]
    Yeste M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology, 2016, 85 (1): 47–64. doi: 10.1016/j.theriogenology.2015.09.047
    [101]
    Jaiswal A N, Vagga A. Cryopreservation: A review article. Cureus, 2022, 14 (11): e31564. doi: 10.7759/cureus.31564
    [102]
    Ali J, Shelton J N. Design of vitrification solutions for the cryopreservation of embryos. J. Reprod. Fertil., 1993, 99 (2): 471–477. doi: 10.1530/jrf.0.0990471
    [103]
    Chen S U, Lien Y R, Chao K H, et al. Cryopreservation of mature human oocytes by vitrification with ethylene glycol in straws. Fertil. Steril., 2000, 74 (4): 804–808. doi: 10.1016/S0015-0282(00)01516-8
    [104]
    Trapphoff T, Heiligentag M, Simon J, et al. Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification. Mol. Hum. Reprod., 2016, 22 (12): 867–881. doi: 10.1093/molehr/gaw059
    [105]
    Petry A, Görlach A. Regulation of NADPH oxidases by G protein-coupled receptors. Antioxid. Redox Signal., 2019, 30 (1): 74–94. doi: 10.1089/ars.2018.7525
    [106]
    Len J S, Koh W S D, Tan S X. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep., 2019, 39 (8): BSR20191601. doi: 10.1042/BSR20191601
    [107]
    Xu X, Cowley S, Flaim C J, et al. The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol. Prog., 2010, 26 (3): 827–837. doi: 10.1002/btpr.368
    [108]
    Hockberger P E, Skimina T A, Centonze V E, et al. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc. Natl. Acad. Sci. U.S.A., 1999, 96 (11): 6255–6260. doi: 10.1073/pnas.96.11.6255
    [109]
    Squirrell J M, Wokosin D L, White J G, et al. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol., 1999, 17 (8): 763–767. doi: 10.1038/11698
    [110]
    Ottosen L D M, Hindkjær J, Ingerslev J. Light exposure of the ovum and preimplantation embryo during ART procedures. J. Assist. Reprod. Genet., 2007, 24: 99–103. doi: 10.1007/s10815-006-9081-x
    [111]
    Hara H, Yamane I, Noto I, et al. Microtubule assembly and in vitro development of bovine oocytes with increased intracellular glutathione level prior to vitrification and in vitro fertilization. Zygote, 2014, 22 (4): 476–482. doi: 10.1017/S0967199413000105
    [112]
    Zhang H M, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res., 2014, 57 (2): 131–146. doi: 10.1111/jpi.12162
    [113]
    Zhao X M, Hao H S, Du W H, et al. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J. Pineal Res., 2016, 60 (2): 132–141. doi: 10.1111/jpi.12290
    [114]
    Wu Z, Pan B, Qazi I H, et al. Melatonin improves in vitro development of vitrified-warmed mouse germinal vesicle oocytes potentially via modulation of spindle assembly checkpoint-related genes. Cells, 2019, 8 (9): 1009. doi: 10.3390/cells8091009
    [115]
    Santos E, Appeltant R, Dang-Nguyen T Q, et al. The effect of resveratrol on the developmental competence of porcine oocytes vitrified at germinal vesicle stage. Reprod. Domest. Anim., 2018, 53 (2): 304–312. doi: 10.1111/rda.13105
    [116]
    Storey K B, Storey J M. Frozen and alive. Sci. Am., 1990, 263 (6): 92–97. doi: 10.1038/scientificamerican1290-92
    [117]
    Bar Dolev M, Braslavsky I, Davies P L. Ice-binding proteins and their function. Annu. Rev. Biochem., 2016, 85: 515–542. doi: 10.1146/annurev-biochem-060815-014546
    [118]
    Eastman J T, DeVries A L. Antarctic fishes. Sci. Am., 1986, 255: 106–114. doi: 10.1038/scientificamerican1186-106
    [119]
    Li C, Guo X, Jia Z, et al. Solution structure of an antifreeze protein CfAFP-501 from Choristoneura fumiferana. J. Biomol. NMR, 2005, 32 (3): 251–256. doi: 10.1007/s10858-005-8206-3
    [120]
    Hakim A, Nguyen J B, Basu K, et al. Crystal structure of an insect antifreeze protein and its implications for ice binding. J. Biol. Chem., 2013, 288 (17): 12295–12304. doi: 10.1074/jbc.M113.450973
    [121]
    Griffith M, Yaish M W F. Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci., 2004, 9 (8): 399–405. doi: 10.1016/j.tplants.2004.06.007
    [122]
    Raymond J A, Fritsen C, Shen K. An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol. Ecol., 2007, 61 (2): 214–221. doi: 10.1111/j.1574-6941.2007.00345.x
    [123]
    Liu Z, Zheng X, Wang J. Bioinspired ice-binding materials for tissue and organ cryopreservation. J. Am. Chem. Soc., 2022, 144 (13): 5685–5701. doi: 10.1021/jacs.2c00203
    [124]
    Liu K, Wang C, Ma J, et al. Janus effect of antifreeze proteins on ice nucleation. Proc. Natl. Acad. Sci. U.S.A., 2016, 113 (51): 14739–14744. doi: 10.1073/pnas.1614379114
    [125]
    Davies P L. Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem. Sci., 2014, 39 (11): 548–555. doi: 10.1016/j.tibs.2014.09.005
    [126]
    Kozuch D J, Stillinger F H, Debenedetti P G. Combined molecular dynamics and neural network method for predicting protein antifreeze activity. Proc. Natl. Acad. Sci. U.S.A., 2018, 115 (52): 13252–13257. doi: 10.1073/pnas.1814945115
    [127]
    Qin Q, Zhao L, Liu Z, et al. Bioinspired l-proline oligomers for the cryopreservation of oocytes via controlling ice growth. ACS Appl. Mater. Interfaces, 2020, 12 (16): 18352–18362. doi: 10.1021/acsami.0c02719
    [128]
    Raymond J A, DeVries A L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. U.S.A., 1977, 74 (6): 2589–2593. doi: 10.1073/pnas.74.6.2589
    [129]
    He Z, Liu K, Wang J. Bioinspired materials for controlling ice nucleation, growth, and recrystallization. Acc. Chem. Res., 2018, 51 (5): 1082–1091. doi: 10.1021/acs.accounts.7b00528
    [130]
    Mazur P. Cryobiology: The freezing of biological systems. Science, 1970, 168: 939–949. doi: 10.1126/science.168.3934.939
    [131]
    Carpenter J F, Hansen T N. Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. Proc. Natl. Acad. Sci. U.S.A., 1992, 89 (19): 8953–8957. doi: 10.1073/pnas.89.19.8953
    [132]
    O'Neil L, Paynter S J, Fuller B J, et al. Vitrification of mature mouse oocytes in a 6 M Me2SO solution supplemented with antifreeze glycoproteins: The effect of temperature. Cryobiology, 1998, 37 (1): 59–66. doi: 10.1006/cryo.1998.2098
    [133]
    Jo J W, Jee B C, Suh C S, et al. The beneficial effects of antifreeze proteins in the vitrification of immature mouse oocytes. PLoS ONE, 2012, 7 (5): e37043. doi: 10.1371/journal.pone.0037043
    [134]
    Biggs C I, Bailey T L, Graham B, et al. Polymer mimics of biomacromolecular antifreezes. Nat. Commun., 2017, 8 (1): 1546. doi: 10.1038/s41467-017-01421-7
    [135]
    El Assal R, Guven S, Gurkan U A, et al. Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification. Adv. Mater., 2014, 26 (33): 5815–5822. doi: 10.1002/adma.201400941
    [136]
    Bownik A, Stępniewska Z. Ectoine as a promising protective agent in humans and animals. Arh. Hig. Rada Toksikol., 2016, 67 (4): 260–265. doi: 10.1515/aiht-2016-67-2837
    [137]
    Choi J K, El Assal R, Ng N, et al. Bio-inspired solute enables preservation of human oocytes using minimum volume vitrification. J. Tissue Eng. Regen. Med., 2018, 12 (1): e142–e149. doi: 10.1002/term.2439
    [138]
    Lin C Y, Chang W J, Lee S Y, et al. Influence of a static magnetic field on the slow freezing of human erythrocytes. Int. J. Radiat. Biol., 2013, 89 (1): 51–56. doi: 10.3109/09553002.2012.717731
    [139]
    Lo Y J, Pan Y H, Lin C Y, et al. Static magnetic field increases survival rate of thawed RBCs frozen in DMSO-free solution. J. Med. Biol. Eng., 2017, 37: 157–161. doi: 10.1007/s40846-016-0195-z
    [140]
    Tiburu E K, Moton D M, Lorigan G A. Development of magnetically aligned phospholipid bilayers in mixtures of palmitoylstearoylphosphatidylcholine and dihexanoylphosphatidylcholine by solid-state NMR spectroscopy. Biochim. Biophys. Acta, 2001, 1512 (2): 206–214. doi: 10.1016/s0005-2736(01)00320-0
    [141]
    Lin S L, Chang W J, Chiu K H, et al. Mechanobiology of MG63 osteoblast-like cells adaptation to static magnetic forces. Electromagn. Biol. Med., 2008, 27 (1): 55–64. doi: 10.1080/15368370701878960
    [142]
    Baniasadi F, Hajiaghalou S, Shahverdi A, et al. Static magnetic field halves cryoinjuries of vitrified mouse COCs, improves their functions and modulates pluripotency of derived blastocysts. Theriogenology, 2021, 163: 31–42. doi: 10.1016/j.theriogenology.2020.12.025
    [143]
    Tan Y, Jin Y, Yang N, et al. Influence of uniform magnetic field on physicochemical properties of freeze-thawed avocado puree. RSC Adv., 2019, 9 (68): 39595–39603. doi: 10.1039/C9RA05280A
    [144]
    Wang Z, Tan Y, Yang N, et al. Influence of oscillating uniform magnetic field and iron supplementation on quality of freeze-thawed surimi. RSC Adv., 2019, 9 (57): 33163–33169. doi: 10.1039/C9RA05365D
    [145]
    Sun W, Xu X, Sun W, et al. Effect of alternated electric field on the ice formation during freezing process of 0.9% K2MnO4 water. In: 2006 IEEE 8th International Conference on Properties & Applications of Dielectric Materials. Bali, Indonesia: IEEE, 2006: 774–777.
    [146]
    Eisenberg D P, Bischof J C, Rabin Y. Thermomechanical stress in cryopreservation via vitrification with nanoparticle heating as a stress-moderating effect. J. Biomech. Eng., 2016, 138 (1): 011010. doi: 10.1115/1.4032053
    [147]
    Etheridge M L, Xu Y, Rott L, et al. RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials. Technology, 2014, 2: 229–242. doi: 10.1142/S2339547814500204
    [148]
    Panhwar F, Chen Z, Hossain S M C, et al. Near-infrared laser mediated modulation of ice crystallization by two-dimensional nanosheets enables high-survival recovery of biological cells from cryogenic temperatures. Nanoscale, 2018, 10 (25): 11760–11774. doi: 10.1039/C8NR01349G
    [149]
    Hou Y, Lu C N, Dou M J, et al. Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation. Acta Biomater., 2020, 102: 403–415. doi: 10.1016/j.actbio.2019.11.023
    [150]
    Chang T, Zhao G. Ice inhibition for cryopreservation: materials, strategies, and challenges. Adv. Sci., 2021, 8 (6): 2002425. doi: 10.1002/advs.202002425
    [151]
    Nam J, Son S, Ochyl L J, et al. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun., 2018, 9 (1): 1074. doi: 10.1038/s41467-018-03473-9
    [152]
    Zhen X, Cheng P, Pu K. Recent Advances in cell membrane-camouflaged nanoparticles for cancer phototherapy. Small, 2019, 15 (1): e1804105. doi: 10.1002/smll.201804105
    [153]
    Qin Z, Bischof J C. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev., 2012, 41 (3): 1191–1217. doi: 10.1039/C1CS15184C
    [154]
    Jain P K, Huang X, El-Sayed I H, et al. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2007, 2: 107–118. doi: 10.1007/s11468-007-9031-1
    [155]
    Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58: 267–297. doi: 10.1146/annurev.physchem.58.032806.104607
    [156]
    Jin B, Kleinhans F W, Mazur P. Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse. Cryobiology, 2014, 68 (3): 419–430. doi: 10.1016/j.cryobiol.2014.03.005
    [157]
    Khosla K, Wang Y, Hagedorn M, et al. Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano, 2017, 11 (8): 7869–7878. doi: 10.1021/acsnano.7b02216
    [158]
    Seki S, Mazur P. Ultra-rapid warming yields high survival of mouse oocytes cooled to −196 °C in dilutions of a standard vitrification solution. PLoS ONE, 2012, 7 (4): e36058. doi: 10.1371/journal.pone.0036058
    [159]
    Bischof J C, Diller K R. From nanowarming to thermoregulation: new multiscale applications of bioheat transfer. Annu. Rev. Biomed. Eng., 2018, 20: 301–327. doi: 10.1146/annurev-bioeng-071516-044532
    [160]
    Parmegiani L, Accorsi A, Cognigni G E, et al. Sterilization of liquid nitrogen with ultraviolet irradiation for safe vitrification of human oocytes or embryos. Fertil. Steril., 2010, 94 (4): 1525–1528. doi: 10.1016/j.fertnstert.2009.05.089
    [161]
    Tian C, Shen L, Gong C, et al. Microencapsulation and nanowarming enables vitrification cryopreservation of mouse preantral follicles. Nat. Commun., 2022, 13 (1): 7515. doi: 10.1038/s41467-022-34549-2
  • 加载中

Catalog

    Figure  1.  The history development of human and mouse oocyte cryopreservation.

    Figure  2.  Different kinds of vitrification carriers. (a) Cryotip; (b) Cryotop; (c) high security vitrification kit. (a, c) Reproduced with permission from Ref. [38]. Copyright 2012, University of Cambridge. (d) Plastic straw; (e) glass capillary; (f) electron microscope grid.

    Figure  3.  Fundamentals of oocyte vitrification. (a) Typical temperature profiles for oocyte vitrification[57]. (b) Typical cell volume excursions for oocyte vitrification[57]. (c) Typical human oocyte vitrification protocol.

    Figure  4.  The ice regulation properties of AFGPs and the application of AFGP mimics. (a) The model of IBF and NIBF of AFGP. (b) The side view of IBF from TmAFP contact with ice plane by molecular dynamics. (a, b) Reproduced with permission from Ref. [124]. Copyright 2016, the National Academy of Sciences of the United States of America. (c) Thermal hysteresis (TH). Reproduced with permission from Ref. [125]. Copyright 2014, Elsevier. (d) The relationship between TH and AFGPs from different origins[126]. (e) The shape of a single ice crystal in Tris buffer. (f) The shape of a single ice crystal in buffer containing MpdAFP along the a-axis. (g) The shape of a single ice crystal in buffer containing MpdAFP along the c-axis. (e–g) Reproduced with permission from Ref. [124]. Copyright 2016, the National Academy of Sciences of the United States of America. (h) The IRI activity of different CPAs. (i) Survival rate of mouse oocytes. (j) JC-1 staining to measure the MMP of vitrified oocytes. (h–j) Reproduced with permission from Ref. [127]. Copyright 2020, American Chemical Society.

    Figure  5.  Laser heat suppressed ice recrystalization and devitrification for cryopreservation. (a) Laser warming device. Reproduced with permission from Ref. [148]. Copyright 2018, the Royal Society of Chemistry. (b) The possible mechanism of laser improving the efficiency of oocyte cryopreservation. (c) Overview of laser chamber. (d) Thermal response of oocytes when subjected to laser-induced warming rates of 1 × 107 °C/min. (c, d) Reproduced with permission from Ref. [156]. Copyright 2014,Elsevier. (e) Laser nanowarming with gold nanorods. (f) Comparison of the survival rate of cryopreserved zebrafish embryos. (e, f) Reproduced with permission from Ref. [157]. Copyright 2014, Elsevier.

    [1]
    Chung K, Donnez J, Ginsburg E, et al. Emergency IVF versus ovarian tissue cryopreservation: decision making in fertility preservation for female cancer patients. Fertil. Steril., 2013, 99 (6): 1534–1542. doi: 10.1016/j.fertnstert.2012.11.057
    [2]
    Fisch B, Abir R. Female fertility preservation: past, present and future. Reproduction, 2018, 156 (1): F11–F27. doi: 10.1530/REP-17-0483
    [3]
    Kelsey T W, Hua C H, Wyatt A, et al. A predictive model of the effect of therapeutic radiation on the human ovary. PLoS ONE, 2022, 17 (11): e0277052. doi: 10.1371/journal.pone.0277052
    [4]
    Anderson R A, Brewster D H, Wood R, et al. The impact of cancer on subsequent chance of pregnancy: a population-based analysis. Hum. Reprod., 2018, 33: 1281–1290. doi: 10.1093/humrep/dey216
    [5]
    Ciarmatori S, Gaston R V. Freezing techniques as fertility preservation strategies: a narrative review. Obstet. Gynecol. Int. J., 2022, 13 (6): 395‒400. doi: 10.15406/ogij.2022.13.00683
    [6]
    Smith G D, Takayama S. Application of microfluidic technologies to human assisted reproduction. Mol. Hum. Reprod., 2017, 23 (4): 257–268. doi: 10.1093/molehr/gaw076
    [7]
    Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature, 1983, 305: 707–709. doi: 10.1038/305707a0
    [8]
    Rienzi L, Ubaldi F M. Oocyte versus embryo cryopreservation for fertility preservation in cancer patients: guaranteeing a women’s autonomy. J. Assist. Reprod. Genet., 2015, 32: 1195–1196. doi: 10.1007/s10815-015-0507-1
    [9]
    Argyle C E, Harper J C, Davies M C. Oocyte cryopreservation: where are we now. Hum. Reprod. Update, 2016, 22 (4): 440–449. doi: 10.1093/humupd/dmw007
    [10]
    Liang T, Motan T. Mature oocyte cryopreservation for fertility preservation. In: Karimi-Busheri F, Weinfeld M, editors. Biobanking and Cryopreservation of Stem Cells. Advances in Experimental Medicine and Biology, vol 951. Cham, Switzerland: Springer, 2016:155−161.
    [11]
    Johnson J A, Tough S. SOGC GENETICS COMMITTEE. Delayed child-bearing. J. Obstet. Gynaecol. Can., 2012, 34 (1): 80–93. doi: 10.1016/S1701-2163(16)35138-6
    [12]
    Clark N A, Swain J E. Oocyte cryopreservation: searching for novel improvement strategies. J. Assist. Reprod. Genet., 2013, 30 (7): 865–875. doi: 10.1007/s10815-013-0028-8
    [13]
    Murray K A, Gibson M I. Chemical approaches to cryopreservation. Nat. Rev. Chem., 2022, 6 (8): 579–593. doi: 10.1038/s41570-022-00407-4
    [14]
    Steponkus P L, Myers S P, Lynch D V, et al. Cryopreservation of Drosophila melanogaster embryos. Nature, 1990, 345 (6271): 170–172. doi: 10.1038/345170a0
    [15]
    Chian R C, Wang Y, Li Y R. Oocyte vitrification: advances, progress and future goals. J. Assist. Reprod. Genet., 2014, 31 (4): 411–420. doi: 10.1007/s10815-014-0180-9
    [16]
    Oktay K, Cil A P, Bang H. Efficiency of oocyte cryopreservation: a metaanalysis. Fertil. Steril., 2006, 86: 70–80. doi: 10.1016/j.fertnstert.2006.03.017
    [17]
    Massie I, Selden C, Hodgson H, et al. GMP cryopreservation of large volumes of cells for regenerative medicine: Active control of the freezing process. Tissue Eng. Part. C Methods, 2014, 20 (9): 693–702. doi: 10.1089/ten.tec.2013.0571
    [18]
    Desrosiers P, Légaré C, Leclerc P, et al. Membranous and structural damage that occur during cryopreservation of human sperm may be time-related events. Fertil. Steril., 2006, 85 (6): 1744–1752. doi: 10.1016/j.fertnstert.2005.11.046
    [19]
    Fabbri R, Porcu E, Marsella T, et al. Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum. Reprod., 2001, 16 (3): 411–416. doi: 10.1093/humrep/16.3.411
    [20]
    Polge C, Smith A U, Parkes A S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 1949, 164 (4172): 666. doi: 10.1038/164666a0
    [21]
    Burks J L, Davis M E, Bakken A H, et al. Morphologic evaluation of frozen rabbit and human ova. Fertil. Steril., 1965, 16 (5): 638–641. doi: 10.1016/S0015-0282(16)35710-7
    [22]
    Parkening T A, Tsunoda Y, Chang M C. Effects of various low temperatures, cryoprotective agents and cooling rates on the survival, fertilizability and development of frozen-thawed mouse eggs. J. Exp. Zool., 1976, 197 (3): 369–374. doi: 10.1002/jez.1401970310
    [23]
    Tsunoda Y, Parkening T A, Chang M C. In vitro fertilization of mouse and hamster eggs after freezing and thawing. Experientia, 1976, 32 (2): 223–224. doi: 10.1007/BF01937777
    [24]
    Chen C. Pregnancy after human oocyte cryopreservation. Lancet, 1986, 1: 884–886. doi: 10.1016/s0140-6736(86)90989-x
    [25]
    Stachecki J J, Cohen J. An overview of oocyte cryopreservation. Reprod. Biomed. Online, 2004, 9: 152–163. doi: 10.1016/S1472-6483(10)62124-4
    [26]
    Bernard A, Fuller B J. Cryopreservation of human oocytes: a review of current problems and perspectives. Hum. Reprod. Update, 1996, 2: 193–207. doi: 10.1093/humupd/2.3.193
    [27]
    Wowk B. Thermodynamic aspects of vitrification. Cryobiology, 2010, 60 (1): 11–22. doi: 10.1016/j.cryobiol.2009.05.007
    [28]
    Stiles W. On the cause of cold death of plants. Protoplasma, 1930, 9: 459–468. doi: 10.1007/BF01943364
    [29]
    Luyet B J. The vitrification of organic colloids and protoplasm. Biodynamica, 1937, 1 (29): 1–14.
    [30]
    Rall W F, Fahy G M. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature, 1985, 313 (6003): 573–575. doi: 10.1038/313573a0
    [31]
    Nagy Z P, Shapiro D, Chang C C. Vitrification of the human embryo: a more efficient and safer in vitro fertilization treatment. Fertil. Steril., 2020, 113 (2): 241–247. doi: 10.1016/j.fertnstert.2019.12.009
    [32]
    Nakagata N. High survival rate of unfertilized mouse oocytes after vitrification. J. Reprod. Fertil., 1989, 87 (2): 479–483. doi: 10.1530/jrf.0.0870479
    [33]
    Kuleshova L, Gianaroli L, Magli C, et al. Birth following vitrification of a small number of human oocytes: Case Report. Hum. Reprod., 1999, 14 (12): 3077–3079. doi: 10.1093/humrep/14.12.3077
    [34]
    Benagiano G, Gianaroli L. The new Italian IVF legislation. Reprod. Biomed. Online, 2004, 9: 117–125. doi: 10.1016/S1472-6483(10)62118-9
    [35]
    Katayama K P, Stehlik J, Kuwayama M, et al. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil. Steril., 2003, 80: 223–224. doi: 10.1016/s0015-0282(03)00551-x
    [36]
    Kuwayama M, Vajta G, Kato O, et al. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online, 2005, 11: 300–308. doi: 10.1016/S1472-6483(10)60837-1
    [37]
    Martino A, Songsasen N, Leibo S P. Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol. Reprod., 1996, 54 (5): 1059–1069. doi: 10.1095/biolreprod54.5.1059
    [38]
    Porcu E, Ciotti P, Venturoli S. Handbook of Human Oocyte Cryopreservation. Cambridge: Cambridge University Press, 2012.
    [39]
    Cao Y X, Xing Q, Li L, et al. Comparison of survival and embryonic development in human oocytes cryopreserved by slow-freezing and vitrification. Fertil. Steril., 2009, 92 (4): 1306–1311. doi: 10.1016/j.fertnstert.2008.08.069
    [40]
    Smith G D, Serafini P C, Fioravanti J, et al. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil. Steril., 2010, 94: 2088–2095. doi: 10.1016/j.fertnstert.2009.12.065
    [41]
    Gook D A, Schiewe M C, Osborn S M, et al. Intracytoplasmic sperm injection and embryo development of human oocytes cryopreserved using 1,2-propanediol. Hum. Reprod., 1995, 10 (10): 2637–2641. doi: 10.1093/oxfordjournals.humrep.a135759
    [42]
    Gruneberg A K, Graham L A, Eves R, et al. Ice recrystallization inhibition activity varies with ice-binding protein type and does not correlate with thermal hysteresis. Cryobiology, 2021, 99: 28–39. doi: 10.1016/j.cryobiol.2021.01.017
    [43]
    Zhang Z, Mu Y, Ding D, et al. Melatonin improves the effect of cryopreservation on human oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma. J. Pineal. Res., 2021, 70 (2): e12707. doi: 10.1111/jpi.12707
    [44]
    Cao B, Qin J, Pan B, et al. Oxidative stress and oocyte cryopreservation: Recent advances in mitigation strategies involving antioxidants. Cells, 2022, 11 (22): 3573. doi: 10.3390/cells11223573
    [45]
    Demirci U, Montesano G. Cell encapsulating droplet vitrification. Lab Chip, 2007, 7 (11): 1428–1433. doi: 10.1039/b705809h
    [46]
    Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology, 2007, 67 (1): 73–80. doi: 10.1016/j.theriogenology.2006.09.014
    [47]
    He X, Park E Y, Fowler A, et al. Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: a study using murine embryonic stem cells. Cryobiology, 2008, 56 (3): 223–232. doi: 10.1016/j.cryobiol.2008.03.005
    [48]
    DeVries A L, Wohlschlag D E. Freezing resistance in some Antarctic fishes. Science, 1969, 163 (3871): 1073–1075. doi: 10.1126/science.163.3871.1073
    [49]
    Balboula A Z, Schindler K, Kotani T, et al. Vitrification-induced activation of lysosomal cathepsin B perturbs spindle assembly checkpoint function in mouse oocytes. Mol. Hum. Reprod., 2020, 26 (9): 689–701. doi: 10.1093/molehr/gaaa051
    [50]
    Glujovsky D, Riestra B, Sueldo C, et al. Vitrification versus slow freezing for women undergoing oocyte cryopreservation. Cochrane Database Syst. Rev., 2014 (9): CD010047. doi: 10.1002/14651858.CD010047.pub2
    [51]
    Cobo A, Romero J L, Pérez S, et al. Storage of human oocytes in the vapor phase of nitrogen. Fertil. Steril., 2010, 94 (5): 1903–1907. doi: 10.1016/j.fertnstert.2009.10.042
    [52]
    Paffoni A, Guarneri C, Ferrari S, et al. Effects of two vitrification protocols on the developmental potential of human mature oocytes. Reprod. Biomed. Online, 2011, 22 (3): 292–298. doi: 10.1016/j.rbmo.2010.11.004
    [53]
    Bonetti A, Cervi M, Tomei F, et al. Ultrastructural evaluation of human metaphase II oocytes after vitrification: closed versus open devices. Fertil. Steril., 2011, 95: 928–935. doi: 10.1016/j.fertnstert.2010.08.027
    [54]
    Pujol A, Zamora M J, Obradors A, et al. Comparison of two different oocyte vitrification methods: a prospective, paired study on the same genetic background and stimulation protocol. Hum. Reprod., 2019, 34 (6): 989–997. doi: 10.1093/humrep/dez045
    [55]
    Stoop D, De Munck N, Jansen E, et al. Clinical validation of a closed vitrification system in an oocyte-donation programme. Reprod. Biomed. Online, 2012, 24: 180–185. doi: 10.1016/j.rbmo.2011.10.015
    [56]
    De Munck N, Santos-Ribeiro S, Stoop D, et al. Open versus closed oocyte vitrification in an oocyte donation programme: a prospective randomized sibling oocyte study. Hum. Reprod., 2016, 31: 377–384. doi: 10.1093/humrep/dev321
    [57]
    Zhao G, Fu J. Microfluidics for cryopreservation. Biotechnol. Adv., 2017, 35 (2): 323–336. doi: 10.1016/j.biotechadv.2017.01.006
    [58]
    Gao D, Critser J K. Mechanisms of cryoinjury in living cells. ILAR J., 2000, 41 (4): 187–196. doi: 10.1093/ilar.41.4.187
    [59]
    Mazur P. Freezing of living cells: mechanisms and implications. Am. J. Physiol., 1984, 247: C125–C142. doi: 10.1152/ajpcell.1984.247.3.C125
    [60]
    Fahy G M, Wowk B. Principles of ice-free cryopreservation by vitrification. In: Wolkers W F, Oldenhof H, editors. Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 2180. New York: Humana, 2021:27–97.
    [61]
    Boutron P, Mehl P, Kaufmann A, et al. Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons I. Binary systems water-polyalcohol. Cryobiology, 1986, 23 (5): 453–469. doi: 10.1016/0011-2240(86)90031-3
    [62]
    Boutron P, Mehl P. Theoretical prediction of devitrification tendency: determination of critical warming rates without using finite expansions. Cryobiology, 1990, 27 (4): 359–377. doi: 10.1016/0011-2240(90)90015-V
    [63]
    Baudot A, Odagescu V. Thermal properties of ethylene glycol aqueous solutions. Cryobiology, 2004, 48 (3): 283–294. doi: 10.1016/j.cryobiol.2004.02.003
    [64]
    Liu Y, Bhattarai P, Dai Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev., 2019, 48 (7): 2053–2108. doi: 10.1039/C8CS00618K
    [65]
    Sathananthan A H, Trounson A, Freeman L. Morphology and fertilizability of frozen human oocytes. Gamete Res., 1987, 16: 343–354. doi: 10.1002/mrd.1120160408
    [66]
    Familiari G, Heyn R, Relucenti M, et al. Ultrastructural dynamics of human reproduction, from ovulation to fertilization and early embryo development. Int. Rev. Cytol., 2006, 249: 53–141. doi: 10.1016/S0074-7696(06)49002-1
    [67]
    Fuku E, Xia L, Downey B R. Ultrastructural changes in bovine oocytes cryopreserved by vitrification. Cryobiology, 1995, 32: 139–156. doi: 10.1006/cryo.1995.1013
    [68]
    Fuku E J, Liu J, Downey B R. In vitro viability and ultrastructural changes in bovine oocytes treated with a vitrification solution. Mol. Reprod. Dev., 1995, 40: 177–185. doi: 10.1002/mrd.1080400206
    [69]
    Hyttel P, Vajta G, Callesen H. Vitrification of bovine oocytes with the open pulled straw method: ultrastructural consequences. Mol. Reprod. Dev., 2000, 56: 80–88. doi: 10.1002/(SICI)1098-2795(200005)56:1<80::AID-MRD10>3.0.CO;2-U
    [70]
    Chang C C, Shapiro D B, Nagy Z P. The effects of vitrification on oocyte quality. Biol. Reprod., 2022, 106 (2): 316–327. doi: 10.1093/biolre/ioab239
    [71]
    Sathananthan A H, Selvaraj K, Girijashankar M L, et al. From oogonia to mature oocytes: inactivation of the maternal centrosome in humans. Microsc. Res. Tech., 2006, 69: 396–407. doi: 10.1002/jemt.20299
    [72]
    Sathananthan A H. Ultrastructure of human gametes, fertilization and embryos in assisted reproduction: a personal survey. Micron, 2013, 44: 1–20. doi: 10.1016/j.micron.2012.05.002
    [73]
    Carroll J, Depypere H, Matthews C D. Freeze-thaw-induced changes of the zona pellucida explains decreased rates of fertilization in frozen-thawed mouse oocytes. J. Reprod. Fertil., 1990, 90 (2): 547–553. doi: 10.1530/jrf.0.0900547
    [74]
    Tian S J, Yan C L, Yang H X, et al. Vitrification solution containing DMSO and EG can induce parthenogenetic activation of in vitro matured ovine oocytes and decrease sperm penetration. Anim. Reprod. Sci., 2007, 101: 365–371. doi: 10.1016/j.anireprosci.2007.01.007
    [75]
    Larman M G, Katz-Jaffe M G, Sheehan C B, et al. 1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum. Reprod., 2007, 22 (1): 250–259. doi: 10.1093/humrep/del319
    [76]
    Wang W H, Meng L, Hackett R J, et al. Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy. Hum. Reprod., 2001, 16 (11): 2374–2378. doi: 10.1093/humrep/16.11.2374
    [77]
    Pickering S J, Johnson M H. The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum. Reprod., 1987, 2: 207–216. doi: 10.1093/oxfordjournals.humrep.a136516
    [78]
    Van der Elst J, Van den Abbeel E, Jacobs R, et al. Effect of 1,2-propanediol and dimethylsulphoxide on the meiotic spindle of the mouse oocyte. Hum. Reprod., 1988, 3 (8): 960–967. doi: 10.1093/oxfordjournals.humrep.a136826
    [79]
    Schatten G, Simerly C, Schatten H. Microtubule configurations during fertilization, mitosis, and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc. Natl. Acad. Sci. U.S.A., 1985, 82 (12): 4152–4156. doi: 10.1073/pnas.82.12.4152
    [80]
    Coticchio G, Bromfield J J, Sciajno R, et al. Vitrification may increase the rate of chromosome misalignment in the metaphase II spindle of human mature oocytes. Reprod. Biomed. Online, 2009, 19 (Suppl3): 29–34. doi: 10.1016/s1472-6483(10)60281-7
    [81]
    Courtney B S, Lane M, Gardner D K. The Cryoloop facilitates re-vitrification of embryos at four successive stages of development without impairing embryo growth. Hum. Reprod., 2006, 21 (11): 2978–2984. doi: 10.1093/humrep/del253
    [82]
    Pereira R M, Marques C C. Animal oocyte and embryo cryopreservation. Cell Tissue Bank., 2008, 9 (4): 267–277. doi: 10.1007/s10561-008-9075-2
    [83]
    Leibo S P, Pool T B. The principal variables of cryopreservation: solutions, temperatures and rate changes. Fertil. Steril., 2011, 96 (2): 269–276. doi: 10.1016/j.fertnstert.2011.06.065
    [84]
    Joly C, Bchini O, Boulekbache H, et al. Effects of 1,2-propanediol on the cytoskeletal organization of the mouse oocyte. Hum. Reprod., 1992, 7 (3): 374–378. doi: 10.1093/oxfordjournals.humrep.a137654
    [85]
    Saunders K M, Parks J E. Effects of cryopreservation procedures on the cytology and fertilization rate of in vitro-matured bovine oocytes. Biol. Reprod., 1999, 61 (1): 178–187. doi: 10.1095/biolreprod61.1.178
    [86]
    Hunt C J. Cryopreservation: Vitrification and controlled rate cooling. In: Crook J, Ludwig T, editors. Stem Cell Banking. Methods in Molecular Biology, vol 1590. New York: Humana Press, 2017: 41–77.
    [87]
    Berthelot-Ricou A, Perrin J, di Giorgio C, et al. Genotoxicity assessment of mouse oocytes by comet assay before vitrification and after warming with three vitrification protocols. Fertil. Steril., 2013, 100: 882–888. doi: 10.1016/j.fertnstert.2013.05.025
    [88]
    Berthelot-Ricou A, Perrin J, di Giorgio C, et al. Assessment of 1,2-propanediol (PrOH) genotoxicity on mouse oocytes by comet assay. Fertil. Steril., 2011, 96: 1002–1007. doi: 10.1016/j.fertnstert.2011.07.1106
    [89]
    Hu W, Marchesi D, Qiao J, et al. Effect of slow freeze versus vitrification on the oocyte: an animal model. Fertil. Steril., 2012, 98 (3): 752–760.e3. doi: 10.1016/j.fertnstert.2012.05.037
    [90]
    Cheng K R, Fu X W, Zhang R N, et al. Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snrpn differentially methylated regions in mouse blastocysts. Fertil. Steril., 2014, 102 (4): 1183–1190.e3. doi: 10.1016/j.fertnstert.2014.06.037
    [91]
    Saenz-de-Juano M D, Peñaranda D S, Marco-Jiménez F, et al. Does vitrification alter the methylation pattern of OCT4 promoter in rabbit late blastocyst. Cryobiology, 2014, 69: 178–180. doi: 10.1016/j.cryobiol.2014.06.002
    [92]
    Spinaci M, Vallorani C, Bucci D, et al. Vitrification of pig oocytes induces changes in histone H4 acetylation and histone H3 lysine 9 methylation (H3K9). Vet. Res. Commun., 2012, 36: 165–171. doi: 10.1007/s11259-012-9527-9
    [93]
    Yan L Y, Yan J, Qiao J, et al. Effects of oocyte vitrification on histone modifications. Reprod. Fertil. Dev., 2010, 22: 920–925. doi: 10.1071/RD09312
    [94]
    Riesco M F, Robles V. Cryopreservation causes genetic and epigenetic changes in zebrafish genital ridges. PLoS ONE, 2013, 8: e67614. doi: 10.1371/journal.pone.0067614
    [95]
    Gualtieri R, Iaccarino M, Mollo V, et al. Slow cooling of human oocytes: ultrastructural injuries and apoptotic status. Fertil. Steril., 2009, 91 (4): 1023–1034. doi: 10.1016/j.fertnstert.2008.01.076
    [96]
    Lei T, Guo N, Liu J Q, et al. Vitrification of in vitro matured oocytes: effects on meiotic spindle configuration and mitochondrial function. Int. J. Clin. Exp. Pathol., 2014, 7 (3): 1159–1165.
    [97]
    Zander-Fox D, Cashman K S, Lane M. The presence of 1 mM glycine in vitrification solutions protects oocyte mitochondrial homeostasis and improves blastocyst development. J. Assist. Reprod. Genet., 2013, 30 (1): 107–116. doi: 10.1007/s10815-012-9898-4
    [98]
    Hornberger K, Yu G, McKenna D, et al. Cryopreservation of hematopoietic stem cells: Emerging assays, cryoprotectant agents, and technology to improve outcomes. Transfus. Med. Hemother., 2019, 46 (3): 188–196. doi: 10.1159/000496068
    [99]
    Best B P. Cryoprotectant toxicity: Facts, issues, and questions. Rejuvenation Res., 2015, 18 (5): 422–436. doi: 10.1089/rej.2014.1656
    [100]
    Yeste M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology, 2016, 85 (1): 47–64. doi: 10.1016/j.theriogenology.2015.09.047
    [101]
    Jaiswal A N, Vagga A. Cryopreservation: A review article. Cureus, 2022, 14 (11): e31564. doi: 10.7759/cureus.31564
    [102]
    Ali J, Shelton J N. Design of vitrification solutions for the cryopreservation of embryos. J. Reprod. Fertil., 1993, 99 (2): 471–477. doi: 10.1530/jrf.0.0990471
    [103]
    Chen S U, Lien Y R, Chao K H, et al. Cryopreservation of mature human oocytes by vitrification with ethylene glycol in straws. Fertil. Steril., 2000, 74 (4): 804–808. doi: 10.1016/S0015-0282(00)01516-8
    [104]
    Trapphoff T, Heiligentag M, Simon J, et al. Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification. Mol. Hum. Reprod., 2016, 22 (12): 867–881. doi: 10.1093/molehr/gaw059
    [105]
    Petry A, Görlach A. Regulation of NADPH oxidases by G protein-coupled receptors. Antioxid. Redox Signal., 2019, 30 (1): 74–94. doi: 10.1089/ars.2018.7525
    [106]
    Len J S, Koh W S D, Tan S X. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep., 2019, 39 (8): BSR20191601. doi: 10.1042/BSR20191601
    [107]
    Xu X, Cowley S, Flaim C J, et al. The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol. Prog., 2010, 26 (3): 827–837. doi: 10.1002/btpr.368
    [108]
    Hockberger P E, Skimina T A, Centonze V E, et al. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc. Natl. Acad. Sci. U.S.A., 1999, 96 (11): 6255–6260. doi: 10.1073/pnas.96.11.6255
    [109]
    Squirrell J M, Wokosin D L, White J G, et al. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol., 1999, 17 (8): 763–767. doi: 10.1038/11698
    [110]
    Ottosen L D M, Hindkjær J, Ingerslev J. Light exposure of the ovum and preimplantation embryo during ART procedures. J. Assist. Reprod. Genet., 2007, 24: 99–103. doi: 10.1007/s10815-006-9081-x
    [111]
    Hara H, Yamane I, Noto I, et al. Microtubule assembly and in vitro development of bovine oocytes with increased intracellular glutathione level prior to vitrification and in vitro fertilization. Zygote, 2014, 22 (4): 476–482. doi: 10.1017/S0967199413000105
    [112]
    Zhang H M, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res., 2014, 57 (2): 131–146. doi: 10.1111/jpi.12162
    [113]
    Zhao X M, Hao H S, Du W H, et al. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J. Pineal Res., 2016, 60 (2): 132–141. doi: 10.1111/jpi.12290
    [114]
    Wu Z, Pan B, Qazi I H, et al. Melatonin improves in vitro development of vitrified-warmed mouse germinal vesicle oocytes potentially via modulation of spindle assembly checkpoint-related genes. Cells, 2019, 8 (9): 1009. doi: 10.3390/cells8091009
    [115]
    Santos E, Appeltant R, Dang-Nguyen T Q, et al. The effect of resveratrol on the developmental competence of porcine oocytes vitrified at germinal vesicle stage. Reprod. Domest. Anim., 2018, 53 (2): 304–312. doi: 10.1111/rda.13105
    [116]
    Storey K B, Storey J M. Frozen and alive. Sci. Am., 1990, 263 (6): 92–97. doi: 10.1038/scientificamerican1290-92
    [117]
    Bar Dolev M, Braslavsky I, Davies P L. Ice-binding proteins and their function. Annu. Rev. Biochem., 2016, 85: 515–542. doi: 10.1146/annurev-biochem-060815-014546
    [118]
    Eastman J T, DeVries A L. Antarctic fishes. Sci. Am., 1986, 255: 106–114. doi: 10.1038/scientificamerican1186-106
    [119]
    Li C, Guo X, Jia Z, et al. Solution structure of an antifreeze protein CfAFP-501 from Choristoneura fumiferana. J. Biomol. NMR, 2005, 32 (3): 251–256. doi: 10.1007/s10858-005-8206-3
    [120]
    Hakim A, Nguyen J B, Basu K, et al. Crystal structure of an insect antifreeze protein and its implications for ice binding. J. Biol. Chem., 2013, 288 (17): 12295–12304. doi: 10.1074/jbc.M113.450973
    [121]
    Griffith M, Yaish M W F. Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci., 2004, 9 (8): 399–405. doi: 10.1016/j.tplants.2004.06.007
    [122]
    Raymond J A, Fritsen C, Shen K. An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol. Ecol., 2007, 61 (2): 214–221. doi: 10.1111/j.1574-6941.2007.00345.x
    [123]
    Liu Z, Zheng X, Wang J. Bioinspired ice-binding materials for tissue and organ cryopreservation. J. Am. Chem. Soc., 2022, 144 (13): 5685–5701. doi: 10.1021/jacs.2c00203
    [124]
    Liu K, Wang C, Ma J, et al. Janus effect of antifreeze proteins on ice nucleation. Proc. Natl. Acad. Sci. U.S.A., 2016, 113 (51): 14739–14744. doi: 10.1073/pnas.1614379114
    [125]
    Davies P L. Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem. Sci., 2014, 39 (11): 548–555. doi: 10.1016/j.tibs.2014.09.005
    [126]
    Kozuch D J, Stillinger F H, Debenedetti P G. Combined molecular dynamics and neural network method for predicting protein antifreeze activity. Proc. Natl. Acad. Sci. U.S.A., 2018, 115 (52): 13252–13257. doi: 10.1073/pnas.1814945115
    [127]
    Qin Q, Zhao L, Liu Z, et al. Bioinspired l-proline oligomers for the cryopreservation of oocytes via controlling ice growth. ACS Appl. Mater. Interfaces, 2020, 12 (16): 18352–18362. doi: 10.1021/acsami.0c02719
    [128]
    Raymond J A, DeVries A L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. U.S.A., 1977, 74 (6): 2589–2593. doi: 10.1073/pnas.74.6.2589
    [129]
    He Z, Liu K, Wang J. Bioinspired materials for controlling ice nucleation, growth, and recrystallization. Acc. Chem. Res., 2018, 51 (5): 1082–1091. doi: 10.1021/acs.accounts.7b00528
    [130]
    Mazur P. Cryobiology: The freezing of biological systems. Science, 1970, 168: 939–949. doi: 10.1126/science.168.3934.939
    [131]
    Carpenter J F, Hansen T N. Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. Proc. Natl. Acad. Sci. U.S.A., 1992, 89 (19): 8953–8957. doi: 10.1073/pnas.89.19.8953
    [132]
    O'Neil L, Paynter S J, Fuller B J, et al. Vitrification of mature mouse oocytes in a 6 M Me2SO solution supplemented with antifreeze glycoproteins: The effect of temperature. Cryobiology, 1998, 37 (1): 59–66. doi: 10.1006/cryo.1998.2098
    [133]
    Jo J W, Jee B C, Suh C S, et al. The beneficial effects of antifreeze proteins in the vitrification of immature mouse oocytes. PLoS ONE, 2012, 7 (5): e37043. doi: 10.1371/journal.pone.0037043
    [134]
    Biggs C I, Bailey T L, Graham B, et al. Polymer mimics of biomacromolecular antifreezes. Nat. Commun., 2017, 8 (1): 1546. doi: 10.1038/s41467-017-01421-7
    [135]
    El Assal R, Guven S, Gurkan U A, et al. Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification. Adv. Mater., 2014, 26 (33): 5815–5822. doi: 10.1002/adma.201400941
    [136]
    Bownik A, Stępniewska Z. Ectoine as a promising protective agent in humans and animals. Arh. Hig. Rada Toksikol., 2016, 67 (4): 260–265. doi: 10.1515/aiht-2016-67-2837
    [137]
    Choi J K, El Assal R, Ng N, et al. Bio-inspired solute enables preservation of human oocytes using minimum volume vitrification. J. Tissue Eng. Regen. Med., 2018, 12 (1): e142–e149. doi: 10.1002/term.2439
    [138]
    Lin C Y, Chang W J, Lee S Y, et al. Influence of a static magnetic field on the slow freezing of human erythrocytes. Int. J. Radiat. Biol., 2013, 89 (1): 51–56. doi: 10.3109/09553002.2012.717731
    [139]
    Lo Y J, Pan Y H, Lin C Y, et al. Static magnetic field increases survival rate of thawed RBCs frozen in DMSO-free solution. J. Med. Biol. Eng., 2017, 37: 157–161. doi: 10.1007/s40846-016-0195-z
    [140]
    Tiburu E K, Moton D M, Lorigan G A. Development of magnetically aligned phospholipid bilayers in mixtures of palmitoylstearoylphosphatidylcholine and dihexanoylphosphatidylcholine by solid-state NMR spectroscopy. Biochim. Biophys. Acta, 2001, 1512 (2): 206–214. doi: 10.1016/s0005-2736(01)00320-0
    [141]
    Lin S L, Chang W J, Chiu K H, et al. Mechanobiology of MG63 osteoblast-like cells adaptation to static magnetic forces. Electromagn. Biol. Med., 2008, 27 (1): 55–64. doi: 10.1080/15368370701878960
    [142]
    Baniasadi F, Hajiaghalou S, Shahverdi A, et al. Static magnetic field halves cryoinjuries of vitrified mouse COCs, improves their functions and modulates pluripotency of derived blastocysts. Theriogenology, 2021, 163: 31–42. doi: 10.1016/j.theriogenology.2020.12.025
    [143]
    Tan Y, Jin Y, Yang N, et al. Influence of uniform magnetic field on physicochemical properties of freeze-thawed avocado puree. RSC Adv., 2019, 9 (68): 39595–39603. doi: 10.1039/C9RA05280A
    [144]
    Wang Z, Tan Y, Yang N, et al. Influence of oscillating uniform magnetic field and iron supplementation on quality of freeze-thawed surimi. RSC Adv., 2019, 9 (57): 33163–33169. doi: 10.1039/C9RA05365D
    [145]
    Sun W, Xu X, Sun W, et al. Effect of alternated electric field on the ice formation during freezing process of 0.9% K2MnO4 water. In: 2006 IEEE 8th International Conference on Properties & Applications of Dielectric Materials. Bali, Indonesia: IEEE, 2006: 774–777.
    [146]
    Eisenberg D P, Bischof J C, Rabin Y. Thermomechanical stress in cryopreservation via vitrification with nanoparticle heating as a stress-moderating effect. J. Biomech. Eng., 2016, 138 (1): 011010. doi: 10.1115/1.4032053
    [147]
    Etheridge M L, Xu Y, Rott L, et al. RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials. Technology, 2014, 2: 229–242. doi: 10.1142/S2339547814500204
    [148]
    Panhwar F, Chen Z, Hossain S M C, et al. Near-infrared laser mediated modulation of ice crystallization by two-dimensional nanosheets enables high-survival recovery of biological cells from cryogenic temperatures. Nanoscale, 2018, 10 (25): 11760–11774. doi: 10.1039/C8NR01349G
    [149]
    Hou Y, Lu C N, Dou M J, et al. Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation. Acta Biomater., 2020, 102: 403–415. doi: 10.1016/j.actbio.2019.11.023
    [150]
    Chang T, Zhao G. Ice inhibition for cryopreservation: materials, strategies, and challenges. Adv. Sci., 2021, 8 (6): 2002425. doi: 10.1002/advs.202002425
    [151]
    Nam J, Son S, Ochyl L J, et al. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun., 2018, 9 (1): 1074. doi: 10.1038/s41467-018-03473-9
    [152]
    Zhen X, Cheng P, Pu K. Recent Advances in cell membrane-camouflaged nanoparticles for cancer phototherapy. Small, 2019, 15 (1): e1804105. doi: 10.1002/smll.201804105
    [153]
    Qin Z, Bischof J C. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev., 2012, 41 (3): 1191–1217. doi: 10.1039/C1CS15184C
    [154]
    Jain P K, Huang X, El-Sayed I H, et al. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2007, 2: 107–118. doi: 10.1007/s11468-007-9031-1
    [155]
    Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58: 267–297. doi: 10.1146/annurev.physchem.58.032806.104607
    [156]
    Jin B, Kleinhans F W, Mazur P. Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse. Cryobiology, 2014, 68 (3): 419–430. doi: 10.1016/j.cryobiol.2014.03.005
    [157]
    Khosla K, Wang Y, Hagedorn M, et al. Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano, 2017, 11 (8): 7869–7878. doi: 10.1021/acsnano.7b02216
    [158]
    Seki S, Mazur P. Ultra-rapid warming yields high survival of mouse oocytes cooled to −196 °C in dilutions of a standard vitrification solution. PLoS ONE, 2012, 7 (4): e36058. doi: 10.1371/journal.pone.0036058
    [159]
    Bischof J C, Diller K R. From nanowarming to thermoregulation: new multiscale applications of bioheat transfer. Annu. Rev. Biomed. Eng., 2018, 20: 301–327. doi: 10.1146/annurev-bioeng-071516-044532
    [160]
    Parmegiani L, Accorsi A, Cognigni G E, et al. Sterilization of liquid nitrogen with ultraviolet irradiation for safe vitrification of human oocytes or embryos. Fertil. Steril., 2010, 94 (4): 1525–1528. doi: 10.1016/j.fertnstert.2009.05.089
    [161]
    Tian C, Shen L, Gong C, et al. Microencapsulation and nanowarming enables vitrification cryopreservation of mouse preantral follicles. Nat. Commun., 2022, 13 (1): 7515. doi: 10.1038/s41467-022-34549-2

    Article Metrics

    Article views (849) PDF downloads(1298)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return