[1] |
Chantrill L A, Nagrial A M, Watson C, et al. Precision medicine for advanced pancreas cancer: The individualized molecular pancreatic cancer therapy (IMPaCT) trial. Clinical Cancer Research, 2015, 21 (9): 2029–2037. doi: 10.1158/1078-0432.CCR-15-0426
|
[2] |
Sun W, Wang P, Yin D, et al. Causal inference via sparse additive models with application to online advertising. Proceedings of the AAAI Conference on Artificial Intelligence, 2015, 29 (1): 297–303. doi: 10.1609/aaai.v29i1.9156
|
[3] |
Athey S, Imbens G W. The state of applied econometrics: Causality and policy evaluation. Journal of Economic Perspectives, 2017, 31 (2): 3–32. doi: 10.1257/jep.31.2.3
|
[4] |
Wager S, Athey S. Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 2018, 113 (523): 1228–1242. doi: 10.1080/01621459.2017.1319839
|
[5] |
Richard Hahn P, Murray J S, Carvalho C M. Bayesian regression tree models for causal inference: Regularization, confounding, and heterogeneous effects (with Discussion). Bayesian Analysis, 2020, 15 (3): 965–1056. doi: 10.1214/19-BA1195
|
[6] |
Stuart E A. Matching methods for causal inference: A review and a look forward. Statistical Science, 2010, 25 (1): 1–21. doi: 10.1214/09-STS313
|
[7] |
Gao Z, Hastie T, Tibshirani R. Assessment of heterogeneous treatment effect estimation accuracy via matching. Statistics in Medicine, 2021, 40 (17): 3990–4013. doi: 10.1002/sim.9010
|
[8] |
Long M, Sun L, Li Q. k-Resolution sequential randomization procedure to improve covariates balance in a randomized experiment. Statistics in Medicine, 2021, 40 (25): 5534–5546. doi: 10.1002/sim.9139
|
[9] |
Künzel S R, Sekhon J S, Bickel P J, et al. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences, 2019, 116 (10): 4156–4165. doi: 10.1073/pnas.1804597116
|
[10] |
Curth A, van der Schaar M. Nonparametric estimation of heterogeneous treatment effects: From theory to learning algorithms. In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. San Diego, CA: PMLR, 2021: 1810−1818.
|
[11] |
Nie X, Wager S. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 2021, 108 (2): 299–319. doi: 10.1093/biomet/asaa076
|
[12] |
Zhang B, Small D S, Lasater K B, et al. Matching one sample according to two criteria in observational studies. Journal of the American Statistical Association, 2023, 118: 1140–1151. doi: 10.1080/01621459.2021.1981337
|
[13] |
Gao Z, Hastie T, Tibshirani R. Assessment of heterogeneous treatment effect estimation accuracy via matching. Statistics in Medicine, 2021, 40 (17): 3990–4013. doi: 10.1002/sim.9010
|
[14] |
Iacus S M, King G, Porro G. Causal inference without balance checking: Coarsened exact matching. Political Analysis, 2012, 20: 1–24. doi: 10.1093/pan/mpr013
|
[15] |
Rubin D B. Matching to remove bias in observational studies. Biometrics, 1973, 29 (1): 159–183. doi: 10.2307/2529684
|
[16] |
Rosenbaum P R, Rubin D B. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983, 70 (1): 41–55. doi: 10.2307/2335942
|
[17] |
Rubin D B. Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2001, 2 (3): 169–188. doi: 10.1023/A:1020363010465
|
[18] |
Hansen B B. The prognostic analogue of the propensity score. Biometrika, 2008, 95 (2): 481–488. doi: 10.1093/biomet/asn004
|
[19] |
Leacy F P, Stuart E A. On the joint use of propensity and prognostic scores in estimation of the average treatment effect on the treated: A simulation study. Statistics in Medicine, 2014, 33 (20): 3488–3508. doi: 10.1002/sim.6030
|
[20] |
Antonelli J, Cefalu M, Palmer N, et al. Doubly robust matching estimators for high dimensional confounding adjustment. Biometrics, 2018, 74 (4): 1171–1179. doi: 10.1111/biom.12887
|
[21] |
Rosenbaum P R, Rubin D B. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 1984, 79 (387): 516–524. doi: 10.2307/2288398
|
[22] |
Wooldridge J M. Should instrumental variables be used as matching variables? Research in Economics, 2016, 70 (2): 232–237. doi: 10.1016/j.rie.2016.01.001
|
[23] |
Rosenbaum P R. Optimal matching for observational studies. Journal of the American Statistical Association, 1989, 84 (408): 1024–1032. doi: 10.2307/2290079
|
[24] |
Zubizarreta J, Keele L. Optimal multilevel matching in clustered observational studies: A case study of the effectiveness of private schools under a large-scale voucher system. Journal of the American Statistical Association, 2017, 112 (518): 547–560. doi: 10.1080/01621459.2016.1240683
|
[25] |
Pimentel S D, Kelz R R. Optimal tradeoffs in matched designs comparing US-trained and internationally trained surgeons. Journal of the American Statistical Association, 2022, 115 (532): 1675–1688. doi: 10.1080/01621459.2020.1720693
|
[26] |
Yu R, Rosenbaum P R. Directional penalties for optimal matching in observational studies. Biometrics, 2019, 75 (4): 1380–1390. doi: 10.1111/biom.13098
|
[27] |
Morucci M, Orlandi V, Roy S, et al. Adaptive hyperbox matching for interpretable individualized treatment effect estimation. In: Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI). Toronto, Canada: PMLR, 2020: 1089–1098.
|
[28] |
Hansen B B, Klopfer S O. Optimal full matching and related designs via network flows. Journal of Computational and Graphical Statistics, 2006, 15 (3): 609–627. doi: 10.1198/106186006X137047
|
[29] |
Pimentel S D, Kelz R R, Silber J H, et al. Large, sparse optimal matching with refined covariate balance in an observational study of the health outcomes produced by new surgeons. Journal of the American Statistical Association, 2015, 110 (510): 515–527. doi: 10.1080/01621459.2014.997879
|
[30] |
Rubin D B. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 1974, 66 (5): 688–701. doi: 10.1037/h0037350
|
[31] |
Robinson P M. Root-N-consistent semiparametric regression. Econometrica, 1988, 56: 931–954. doi: 0012-9682(198807)56:4<931:RSR>2.0.CO;2-3
|
[32] |
Glazerman S, Levy D M, Myers D. Nonexperimental versus experimental estimates of earnings impacts. The Annals of the American Academy of Political and Social Science, 2003, 589 (1): 63–93. doi: 10.1177/0002716203254879
|
[33] |
Pearl J. On a class of bias-amplifying variables that endanger effect estimates. In: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2010: 417−424.
|
[34] |
Chen Y L. The minimal average cost flow problem. European Journal of Operational Research, 1995, 81 (3): 561–570. doi: 10.1016/0377-2217(93)E0348-2
|
[35] |
Brito M R, Chávez E L, Quiroz A J, et al. Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection. Statistics & Probability Letters, 1997, 35 (1): 33–42. doi: 10.1016/S0167-7152(96)00213-1
|
[36] |
Korte B, Vygen J. Combinatorial Optimization: Theory and Algorithms. Berlin: Springer, 2011.
|
[37] |
Ye S S, Chen Y, Padilla O H M. Non-parametric interpretable score based estimation of heterogeneous treatment effects. arXiv.2110.02401, 2021.
|
[38] |
Chipman H A, George E I, McCulloch R E. BART: Bayesian additive regression trees. The Annals of Applied Statistics, 2010, 4: 266–298. doi: 10.1214/09-AOAS285
|
[39] |
Brand J E, Xu J, Koch B, et al. Uncovering sociological effect heterogeneity using machine learning. arXiv: 1909.09138, 2019.
|
[1] |
Chantrill L A, Nagrial A M, Watson C, et al. Precision medicine for advanced pancreas cancer: The individualized molecular pancreatic cancer therapy (IMPaCT) trial. Clinical Cancer Research, 2015, 21 (9): 2029–2037. doi: 10.1158/1078-0432.CCR-15-0426
|
[2] |
Sun W, Wang P, Yin D, et al. Causal inference via sparse additive models with application to online advertising. Proceedings of the AAAI Conference on Artificial Intelligence, 2015, 29 (1): 297–303. doi: 10.1609/aaai.v29i1.9156
|
[3] |
Athey S, Imbens G W. The state of applied econometrics: Causality and policy evaluation. Journal of Economic Perspectives, 2017, 31 (2): 3–32. doi: 10.1257/jep.31.2.3
|
[4] |
Wager S, Athey S. Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 2018, 113 (523): 1228–1242. doi: 10.1080/01621459.2017.1319839
|
[5] |
Richard Hahn P, Murray J S, Carvalho C M. Bayesian regression tree models for causal inference: Regularization, confounding, and heterogeneous effects (with Discussion). Bayesian Analysis, 2020, 15 (3): 965–1056. doi: 10.1214/19-BA1195
|
[6] |
Stuart E A. Matching methods for causal inference: A review and a look forward. Statistical Science, 2010, 25 (1): 1–21. doi: 10.1214/09-STS313
|
[7] |
Gao Z, Hastie T, Tibshirani R. Assessment of heterogeneous treatment effect estimation accuracy via matching. Statistics in Medicine, 2021, 40 (17): 3990–4013. doi: 10.1002/sim.9010
|
[8] |
Long M, Sun L, Li Q. k-Resolution sequential randomization procedure to improve covariates balance in a randomized experiment. Statistics in Medicine, 2021, 40 (25): 5534–5546. doi: 10.1002/sim.9139
|
[9] |
Künzel S R, Sekhon J S, Bickel P J, et al. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences, 2019, 116 (10): 4156–4165. doi: 10.1073/pnas.1804597116
|
[10] |
Curth A, van der Schaar M. Nonparametric estimation of heterogeneous treatment effects: From theory to learning algorithms. In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. San Diego, CA: PMLR, 2021: 1810−1818.
|
[11] |
Nie X, Wager S. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 2021, 108 (2): 299–319. doi: 10.1093/biomet/asaa076
|
[12] |
Zhang B, Small D S, Lasater K B, et al. Matching one sample according to two criteria in observational studies. Journal of the American Statistical Association, 2023, 118: 1140–1151. doi: 10.1080/01621459.2021.1981337
|
[13] |
Gao Z, Hastie T, Tibshirani R. Assessment of heterogeneous treatment effect estimation accuracy via matching. Statistics in Medicine, 2021, 40 (17): 3990–4013. doi: 10.1002/sim.9010
|
[14] |
Iacus S M, King G, Porro G. Causal inference without balance checking: Coarsened exact matching. Political Analysis, 2012, 20: 1–24. doi: 10.1093/pan/mpr013
|
[15] |
Rubin D B. Matching to remove bias in observational studies. Biometrics, 1973, 29 (1): 159–183. doi: 10.2307/2529684
|
[16] |
Rosenbaum P R, Rubin D B. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983, 70 (1): 41–55. doi: 10.2307/2335942
|
[17] |
Rubin D B. Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2001, 2 (3): 169–188. doi: 10.1023/A:1020363010465
|
[18] |
Hansen B B. The prognostic analogue of the propensity score. Biometrika, 2008, 95 (2): 481–488. doi: 10.1093/biomet/asn004
|
[19] |
Leacy F P, Stuart E A. On the joint use of propensity and prognostic scores in estimation of the average treatment effect on the treated: A simulation study. Statistics in Medicine, 2014, 33 (20): 3488–3508. doi: 10.1002/sim.6030
|
[20] |
Antonelli J, Cefalu M, Palmer N, et al. Doubly robust matching estimators for high dimensional confounding adjustment. Biometrics, 2018, 74 (4): 1171–1179. doi: 10.1111/biom.12887
|
[21] |
Rosenbaum P R, Rubin D B. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 1984, 79 (387): 516–524. doi: 10.2307/2288398
|
[22] |
Wooldridge J M. Should instrumental variables be used as matching variables? Research in Economics, 2016, 70 (2): 232–237. doi: 10.1016/j.rie.2016.01.001
|
[23] |
Rosenbaum P R. Optimal matching for observational studies. Journal of the American Statistical Association, 1989, 84 (408): 1024–1032. doi: 10.2307/2290079
|
[24] |
Zubizarreta J, Keele L. Optimal multilevel matching in clustered observational studies: A case study of the effectiveness of private schools under a large-scale voucher system. Journal of the American Statistical Association, 2017, 112 (518): 547–560. doi: 10.1080/01621459.2016.1240683
|
[25] |
Pimentel S D, Kelz R R. Optimal tradeoffs in matched designs comparing US-trained and internationally trained surgeons. Journal of the American Statistical Association, 2022, 115 (532): 1675–1688. doi: 10.1080/01621459.2020.1720693
|
[26] |
Yu R, Rosenbaum P R. Directional penalties for optimal matching in observational studies. Biometrics, 2019, 75 (4): 1380–1390. doi: 10.1111/biom.13098
|
[27] |
Morucci M, Orlandi V, Roy S, et al. Adaptive hyperbox matching for interpretable individualized treatment effect estimation. In: Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI). Toronto, Canada: PMLR, 2020: 1089–1098.
|
[28] |
Hansen B B, Klopfer S O. Optimal full matching and related designs via network flows. Journal of Computational and Graphical Statistics, 2006, 15 (3): 609–627. doi: 10.1198/106186006X137047
|
[29] |
Pimentel S D, Kelz R R, Silber J H, et al. Large, sparse optimal matching with refined covariate balance in an observational study of the health outcomes produced by new surgeons. Journal of the American Statistical Association, 2015, 110 (510): 515–527. doi: 10.1080/01621459.2014.997879
|
[30] |
Rubin D B. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 1974, 66 (5): 688–701. doi: 10.1037/h0037350
|
[31] |
Robinson P M. Root-N-consistent semiparametric regression. Econometrica, 1988, 56: 931–954. doi: 0012-9682(198807)56:4<931:RSR>2.0.CO;2-3
|
[32] |
Glazerman S, Levy D M, Myers D. Nonexperimental versus experimental estimates of earnings impacts. The Annals of the American Academy of Political and Social Science, 2003, 589 (1): 63–93. doi: 10.1177/0002716203254879
|
[33] |
Pearl J. On a class of bias-amplifying variables that endanger effect estimates. In: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2010: 417−424.
|
[34] |
Chen Y L. The minimal average cost flow problem. European Journal of Operational Research, 1995, 81 (3): 561–570. doi: 10.1016/0377-2217(93)E0348-2
|
[35] |
Brito M R, Chávez E L, Quiroz A J, et al. Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection. Statistics & Probability Letters, 1997, 35 (1): 33–42. doi: 10.1016/S0167-7152(96)00213-1
|
[36] |
Korte B, Vygen J. Combinatorial Optimization: Theory and Algorithms. Berlin: Springer, 2011.
|
[37] |
Ye S S, Chen Y, Padilla O H M. Non-parametric interpretable score based estimation of heterogeneous treatment effects. arXiv.2110.02401, 2021.
|
[38] |
Chipman H A, George E I, McCulloch R E. BART: Bayesian additive regression trees. The Annals of Applied Statistics, 2010, 4: 266–298. doi: 10.1214/09-AOAS285
|
[39] |
Brand J E, Xu J, Koch B, et al. Uncovering sociological effect heterogeneity using machine learning. arXiv: 1909.09138, 2019.
|