
Galois dual codes are a generalization of Euclidean dual codes and Hermitian dual codes. We show that the
The process of representing
[1] |
Goppa V D. Codes on algebraic curves. Soviet Mathematics Doklady, 1981, 24 (1): 170–172.
|
[2] |
Tsfasman M A, Vlăduţ S G, Zink T. Modular curves, Shimura curves, and Goppa codes, better than the Varshamov–Gilbert bound. Mathematische Nachrichten, 1982, 109: 21–28. DOI: 10.1002/mana.19821090103
|
[3] |
Mesnager S, Tang C, Qi Y. Complementary dual algebraic geometry codes. IEEE Transactions on Information Theory, 2018, 64 (4): 2390–2397. DOI: 10.1109/TIT.2017.2766075
|
[4] |
Jin L, Kan H. Self-dual near MDS codes from elliptic curves. IEEE Transactions on Information Theory, 2019, 65 (4): 2166–2170. DOI: 10.1109/TIT.2018.2880913
|
[5] |
Barg A, Tamo I, Vlăduţ S. Locally recoverable codes on algebraic curves. IEEE Transactions on Information Theory, 2017, 63 (8): 4928–4939. DOI: 10.1109/TIT.2017.2700859
|
[6] |
Li X, Ma L, Xing C. Optimal locally repairable codes via elliptic curves. IEEE Transactions on Information Theory, 2019, 65 (1): 108–117. DOI: 10.1109/TIT.2018.2844216
|
[7] |
Ma L, Xing C. The group structures of automorphism groups of elliptic curves over finite fields and their applications to optimal locally repairable codes. Journal of Combinatorial Theory, Series A, 2023, 193: 105686. DOI: 10.1016/j.jcta.2022.105686
|
[8] |
Massey J L. Linear codes with complementary duals. Discrete Mathematics, 1992, 106–107: 337–342. DOI: 10.1016/0012-365X(92)90563-U
|
[9] |
Carlet C, Guilley S. Complementary dual codes for counter-measures to side-channel attacks. In: Coding Theory and Applications. Cham, Switzerland: Springer, 2015.
|
[10] |
Guenda K, Jitman S, Gulliver T A. Constructions of good entanglement-assisted quantum error correcting codes. Designs, Codes and Cryptography, 2018, 86: 121–136. DOI: 10.1007/s10623-017-0330-z
|
[11] |
Carlet C, Mesnager S, Tang C, et al. Euclidean and Hermitian LCD MDS codes. Designs, Codes and Cryptography, 2018, 86: 2605–2618. DOI: 10.1007/s10623-018-0463-8
|
[12] |
Chen B, Liu H. New constructions of MDS codes with complementary duals. IEEE Transactions on Information Theory, 2018, 64 (8): 5776–5782. DOI: 10.1109/TIT.2017.2748955
|
[13] |
Jin L. Construction of MDS codes with complementary duals. IEEE Transactions on Information Theory, 2017, 63 (5): 2843–2847. DOI: 10.1109/TIT.2016.2644660
|
[14] |
Beelen P, Jin L. Explicit MDS codes with complementary duals. IEEE Transactions on Information Theory, 2018, 64 (11): 7188–7193. DOI: 10.1109/TIT.2018.2816934
|
[15] |
Liu H, Liu S. Construction of MDS twisted Reed–Solomon codes and LCD MDS codes. Designs, Codes and Cryptography, 2021, 89: 2051–2065. DOI: 10.1007/s10623-021-00899-z
|
[16] |
Shi X, Yue Q, Yang S. New LCD MDS codes constructed from generalized Reed–Solomon codes. Journal of Algebra and Its Applications, 2018, 18 (8): 1950150. DOI: 10.1142/S0219498819501500
|
[17] |
Fan Y, Zhang L. Galois self-dual constacyclic codes. Designs, Codes and Cryptography, 2017, 84: 473–492. DOI: 10.1007/s10623-016-0282-8
|
[18] |
Liu X, Fan Y, Liu H. Galois LCD codes over finite fields. Finite Fields and Their Applications, 2018, 49: 227–242. DOI: 10.1016/j.ffa.2017.10.001
|
[19] |
Cao M. MDS Codes with Galois hulls of arbitrary dimensions and the related entanglement-assisted quantum error correction. IEEE Transactions on Information Theory, 2021, 67 (12): 7964–7984. DOI: 10.1109/TIT.2021.3117562
|
[20] |
Cao M, Yang J. Intersections of linear codes and related MDS codes with new Galois hulls. arXiv: 2210.05551, 2022.
|
[21] |
Fang X, Jin R, Luo J, et al. New Galois hulls of GRS codes and application to EAQECCs. Cryptography and Communications, 2022, 14: 145–159. DOI: 10.1007/s12095-021-00525-8
|
[22] |
Li Y, Zhu S, Li P. On MDS codes with Galois hulls of arbitrary dimensions. Cryptography and Communications, 2023, 15: 565–587. DOI: 10.1007/s12095-022-00621-3
|
[23] |
Wu Y, Li C, Yang S. New Galois hulls of generalized Reed–Solomon codes. Finite Fields and Their Applications, 2022, 83: 102084. DOI: 10.1016/j.ffa.2022.102084
|
[24] |
Stichtenoth H. Algebraic Function Fields and Codes. Berlin: Springer-Verlag, 2009.
|
[25] |
Lang S. Algebra. New York: Springer-Verlag, 2002.
|
Entry | Catalyst |
T(°C) | Yieldb (g) | Activityb (106) | Mnc(104) | PDIc |
Branchd |
Tme(°C) |
1 | Ni1 | 0 | 2.65 | 3.18 | 38.2 | 1.8 | 7 | 128.2 |
2 | Ni1 | 30 | 5.43 | 6.51 | 33.6 | 2.1 | 21 | 118.0 |
3 | Ni1 | 60 | 2.52 | 3.02 | 21.9 | 2.0 | 40 | 114.4 |
4 | Ni1 | 90 | 2.01 | 2.41 | 16.6 | 2.1 | 41 | 114.0 |
5 | Ni2 | 0 | 2.35 | 2.82 | 37.6 | 1.8 | 15 | 120.2 |
6 | Ni2 | 30 | 4.11 | 4.93 | 29.7 | 1.9 | 26 | 117.0 |
7 | Ni2 | 60 | 2.76 | 3.31 | 17.3 | 2.1 | 46 | 113.6 |
8 | Ni2 | 90 | 0.90 | 1.08 | 14.8 | 2.1 | 61 | 80.9 |
9 | Ni3 | 0 | 1.10 | 1.32 | 16.2 | 2.3 | 36 | 115.1 |
10 | Ni3 | 30 | 1.94 | 2.33 | 12.8 | 2.6 | 51 | 106.1 |
11 | Ni3 | 60 | 0.80 | 0.96 | 11.9 | 3.1 | 72 | 69.1 |
12 | Ni3 | 90 | 0.02 | 0.02 | 11.5 | 3.2 | 94 | – |
a 1 μmol of catalyst in CH2Cl2 (2 mL), [Al]/[Ni] = 500. Vn-heptane = 20 mL, tpolymerization = 10 min, Pethylene = 8 atm. b Activity is in units of 106 g·mol−1·h−1. c Determined by Gel Permeation Chromatography (GPC) in 1,2,4-trichlorobenzene at 150 °C. d Branches per 1000 carbons, determined by 1H NMR. e Determined by differential scanning calorimetry. |