ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Chemistry 31 March 2023

Recent advances in fermionic hierarchical equations of motion method for strongly correlated quantum impurity systems

Cite this:
https://doi.org/10.52396/JUSTC-2022-0164
More Information
  • Author Bio:

    Jiaan Cao is currently a Ph.D. student at the Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, under the supervision of Prof. Xiao Zheng. His research mainly focuses on strongly correlated electronic system and theoretical methods for open quantum systems

    Xiao Zheng received his Ph.D. degree in Chemistry from the University of Hong Kong. He is currently a Professor at Fudan University. His research interests include development of quantum dissipation theory and related numerical methods for many-body open quantum systems and first-principles-based simulation methods for strongly correlated systems

  • Corresponding author: E-mail: xz58@ustc.edu.cn
  • Received Date: 17 November 2022
  • Accepted Date: 12 January 2023
  • Available Online: 31 March 2023
  • Investigations of strongly correlated quantum impurity systems (QIS), which exhibit diversified novel and intriguing quantum phenomena, have become a highly concerning subject in recent years. The hierarchical equations of motion (HEOM) method is one of the most popular numerical methods to characterize QIS linearly coupled to the environment. This review provides a comprehensive account of a formally rigorous and numerical convergent HEOM method, including a modeling description of the QIS and an overview of the fermionic HEOM formalism. Moreover, a variety of spectrum decomposition schemes and hierarchal terminators have been proposed and developed, which significantly improve the accuracy and efficiency of the HEOM method, especially in cryogenic temperature regimes. The practicality and usefulness of the HEOM method to tackle strongly correlated issues are exemplified by numerical simulations for the characterization of nonequilibrium quantum transport and strongly correlated Kondo states as well as the investigation of nonequilibrium quantum thermodynamics.

      Schematic illustration for the structure of the fermionic hierarchical equations of motion (HEOM) method.

    Investigations of strongly correlated quantum impurity systems (QIS), which exhibit diversified novel and intriguing quantum phenomena, have become a highly concerning subject in recent years. The hierarchical equations of motion (HEOM) method is one of the most popular numerical methods to characterize QIS linearly coupled to the environment. This review provides a comprehensive account of a formally rigorous and numerical convergent HEOM method, including a modeling description of the QIS and an overview of the fermionic HEOM formalism. Moreover, a variety of spectrum decomposition schemes and hierarchal terminators have been proposed and developed, which significantly improve the accuracy and efficiency of the HEOM method, especially in cryogenic temperature regimes. The practicality and usefulness of the HEOM method to tackle strongly correlated issues are exemplified by numerical simulations for the characterization of nonequilibrium quantum transport and strongly correlated Kondo states as well as the investigation of nonequilibrium quantum thermodynamics.

    • This review provides an overview of the formally rigorous fermionic HEOM formalism.
    • This review introduces the recent advances in spectrum decomposition schemes for environmental memory and hierarchical terminators.
    • The review surveys recent applications of the fermionic HEOM method to the simulation of strongly correlated quantum impurity systems and the investigation of novel quantum phenomena.

  • loading
  • [1]
    Thoss M, Evers F. Perspective: Theory of quantum transport in molecular junctions. J. Chem. Phys., 2018, 148 (3): 030901. doi: 10.1063/1.5003306
    [2]
    Lambert N, Raheja T, Ahmed S, et al. BoFiN-HEOM: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics. arXiv: 2010.10806, 2020.
    [3]
    Uzma F, Yang L Q, He D W, et al. Understanding the sub-meV precision-tuning of magnetic anisotropy of single-molecule junction. J. Phys. Chem. C, 2021, 125 (12): 6990–6997. doi: 10.1021/acs.jpcc.1c01398
    [4]
    Yang L Q, Wang X L, Uzma F, et al. Evolution of magnetic anisotropy of an organometallic molecule in a mechanically controlled break junction: The roles of connecting electrodes. J. Phys. Chem. C, 2019, 123 (50): 30754–30764. doi: 10.1021/acs.jpcc.9b10156
    [5]
    Song K, Shi Q. Theoretical study of photoinduced proton coupled electron transfer reaction using the non-perturbative hierarchical equations of motion method. J. Chem. Phys., 2017, 146 (18): 184108. doi: 10.1063/1.4982928
    [6]
    Weiss U. Quantum Dissipative Systems. Singapore: World Scientific, 2012.
    [7]
    Joachim C, Gimzewski J K, Aviram A. Electronics using hybrid-molecular and mono-molecular devices. Nature, 2000, 408 (6812): 541–548. doi: 10.1038/35046000
    [8]
    Lu W, Lieber C M. Nanoelectronics from the bottom up. Nat. Mater., 2007, 6: 841–850. doi: 10.1038/nmat2028
    [9]
    Monroe C. Quantum information processing with atoms and photons. Nature, 2002, 416 (6877): 238–246. doi: 10.1038/416238a
    [10]
    Biolatti E, Iotti R C, Zanardi P, et al. Quantum information processing with semiconductor macroatoms. Phys. Rev. Lett., 2000, 85 (26): 5647–5650. doi: 10.1103/PhysRevLett.85.5647
    [11]
    Mannini M, Pineider F, Danieli C, et al. Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature, 2010, 468 (7322): 417–421. doi: 10.1038/nature09478
    [12]
    Sanvito S. Molecular spintronics. Chem. Soc. Rev., 2011, 40 (6): 3336–3355. doi: 10.1039/c1cs15047b
    [13]
    Aspuru-Guzik A, Dutoi A D, Love P J, et al. Simulated quantum computation of molecular energies. Science, 2005, 309 (5741): 1704–1707. doi: 10.1126/science.1113479
    [14]
    DeMille D. Quantum computation with trapped polar molecules. Phys. Rev. Lett., 2002, 88 (6): 067901. doi: 10.1103/PhysRevLett.88.067901
    [15]
    Soe W H, Manzano C, Robles R, et al. On-surface atom-by-atom-assembled aluminum binuclear tetrabenzophenazine organometallic magnetic complex. Nano Lett., 2019, 20 (1): 384–388. doi: 10.1021/acs.nanolett.9b04040
    [16]
    Parks J J, Champagne A R, Costi T A, et al. Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science, 2010, 328 (5984): 1370–1373. doi: 10.1126/science.1186874
    [17]
    Kouwenhoven L, Glazman L. Revival of the Kondo effect. Phys. World, 2001, 14 (1): 33–38. doi: 10.1088/2058-7058/14/1/28
    [18]
    Zhao A D, Li Q X, Chen L, et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science, 2005, 309 (5740): 1542–1544. doi: 10.1126/science.1113449
    [19]
    Li X Y, Zhu L, Li B, et al. Molecular molds for regularizing Kondo states at atom/metal interfaces. Nat. Commun., 2020, 11: 2566. doi: 10.1038/s41467-019-13993-7
    [20]
    Pershin Y V, Di Ventra M. Memory effects in complex materials and nanoscale systems. Adv. Phys., 2011, 60 (2): 145–227. doi: 10.1080/00018732.2010.544961
    [21]
    Zheng X, Yan Y J, Di Ventra M. Kondo memory in driven strongly correlated quantum dots. Phys. Rev. Lett., 2013, 111 (8): 086601. doi: 10.1103/PhysRevLett.111.086601
    [22]
    Zhang H D, Cui L, Gong H, et al. Hierarchical equations of motion method based on Fano spectrum decomposition for low temperature environments. J. Chem. Phys., 2020, 152 (6): 064107. doi: 10.1063/1.5136093
    [23]
    Stewart G R. Unconventional superconductivity. Adv. Phys., 2017, 66 (2): 75–196. doi: 10.1080/00018732.2017.1331615
    [24]
    Ye L Z, Zheng X, Yan Y J, et al. Thermodynamic meaning of local temperature of nonequilibrium open quantum systems. Phys. Rev. B, 2016, 94 (24): 245105. doi: 10.1103/PhysRevB.94.245105
    [25]
    Zeng X Z, Ye L Z, Zhang D C, et al. Effect of quantum resonances on local temperature in nonequilibrium open systems. Phys. Rev. B, 2021, 103 (8): 085411. doi: 10.1103/PhysRevB.103.085411
    [26]
    Coronado E. Molecular magnetism: From chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater., 2020, 5 (2): 87–104. doi: 10.1038/s41578-019-0146-8
    [27]
    Otte A F, Ternes M, von Bergmann K, et al. The role of magnetic anisotropy in the Kondo effect. Nat. Phys., 2008, 4 (11): 847–850. doi: 10.1038/nphys1072
    [28]
    Heinrich B W, Braun L, Pascual J I, et al. Tuning the magnetic anisotropy of single molecules. Nano Lett., 2015, 15 (6): 4024–4028. doi: 10.1021/acs.nanolett.5b00987
    [29]
    Minamitani E, Tsukahara N, Matsunaka D, et al. Symmetry-driven novel Kondo effect in a molecule. Phys. Rev. Lett., 2012, 109 (8): 086602. doi: 10.1103/PhysRevLett.109.086602
    [30]
    Yang K, Phark S H, Bae Y, et al. Probing resonating valence bond states in artificial quantum magnets. Nat. Commun., 2021, 12: 993. doi: 10.1038/s41467-020-20314-w
    [31]
    Wilson K G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys., 1975, 47 (4): 773. doi: 10.1103/RevModPhys.47.773
    [32]
    Bulla R, Costi T A, Pruschke T. Numerical renormalization group method for quantum impurity systems. Reviews of Modern Physics, 2008, 80 (2): 395–450. doi: 10.1103/RevModPhys.80.395
    [33]
    White S R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 1992, 69 (19): 2863–2866. doi: 10.1103/PhysRevLett.69.2863
    [34]
    White S R, Feiguin A E. Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett., 2004, 93 (7): 076401. doi: 10.1103/PhysRevLett.93.076401
    [35]
    Yao Y, Sun K W, Luo Z, et al. Full quantum dynamics simulation of a realistic molecular system using the adaptive time-dependent density matrix renormalization group method. J. Phys. Chem. Lett., 2018, 9 (2): 413–419. doi: 10.1021/acs.jpclett.7b03224
    [36]
    Büsser C A, Heidrich-Meisner F. Inducing spin correlations and entanglement in a double quantum dot through nonequilibrium transport. Phys. Rev. Lett., 2013, 111 (24): 246807. doi: 10.1103/PhysRevLett.111.246807
    [37]
    Caffarel M, Krauth W. Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity. Phys. Rev. Lett., 1994, 72 (10): 1545–1548. doi: 10.1103/PhysRevLett.72.1545
    [38]
    Hirsch J E, Fye R M. Monte Carlo method for magnetic impurities in metals. Phys. Rev. Lett., 1986, 56 (23): 2521–2524. doi: 10.1103/PhysRevLett.56.2521
    [39]
    Cohen G, Gull E, Reichman D R, et al. Taming the dynamical sign problem in real-time evolution of quantum many-body problems. Phys. Rev. Lett., 2015, 115 (26): 266802. doi: 10.1103/PhysRevLett.115.266802
    [40]
    Ridley M, Gull E, Cohen G. Lead geometry and transport statistics in molecular junctions. J. Chem. Phys., 2019, 150 (24): 244107. doi: 10.1063/1.5096244
    [41]
    Weiss S, Eckel J, Thorwart M, et al. Iterative real-time path integral approach to nonequilibrium quantum transport. Phys. Rev. B, 2008, 77 (19): 195316. doi: 10.1103/PhysRevB.77.195316
    [42]
    Mühlbacher L, Rabani E. Real-time path integral approach to nonequilibrium many-body quantum systems. Phys. Rev. Lett., 2008, 100 (17): 176403. doi: 10.1103/PhysRevLett.100.176403
    [43]
    Agarwalla B K, Segal D. The Anderson impurity model out-of-equilibrium: Assessing the accuracy of simulation techniques with an exact current-occupation relation. J. Chem. Phys., 2017, 147 (5): 054104. doi: 10.1063/1.4996562
    [44]
    Segal D, Millis A J, Reichman D R. Numerically exact path-integral simulation of nonequilibrium quantum transport and dissipation. Phys. Rev. B, 2010, 82 (20): 205323. doi: 10.1103/PhysRevB.82.205323
    [45]
    Simine L, Segal D. Path-integral simulations with fermionic and bosonic reservoirs: Transport and dissipation in molecular electronic junctions. J. Chem. Phys., 2013, 138 (21): 214111. doi: 10.1063/1.4808108
    [46]
    Kilgour M, Agarwalla B K, Segal D. Path-integral methodology and simulations of quantum thermal transport: Full counting statistics approach. J. Chem. Phys., 2019, 150 (8): 084111. doi: 10.1063/1.5084949
    [47]
    Cohen G, Gull E, Reichman D R, et al. Green’s functions from real-time bold-line Monte Carlo calculations: Spectral properties of the nonequilibrium Anderson impurity model. Phys. Rev. Lett., 2014, 112 (14): 146802. doi: 10.1103/PhysRevLett.112.146802
    [48]
    Rahman H, Kleinekathöfer U. Non-equilibrium Green’s function transport theory for molecular junctions with general molecule-lead coupling and temperatures. J. Chem. Phys., 2018, 149 (23): 234108. doi: 10.1063/1.5054312
    [49]
    Cohen G, Galperin M. Green’s function methods for single molecule junctions. J. Chem. Phys., 2020, 152 (9): 090901. doi: 10.1063/1.5145210
    [50]
    Jacob D. Simulation of inelastic spin flip excitations and Kondo effect in STM spectroscopy of magnetic molecules on metal substrates. J. Phys.: Condens. Matter, 2018, 30 (35): 354003. doi: 10.1088/1361-648X/aad523
    [51]
    Han L, Chernyak V, Yan Y A, et al. Stochastic representation of non-Markovian fermionic quantum dissipation. Phys. Rev. Lett., 2019, 123 (5): 050601. doi: 10.1103/PhysRevLett.123.050601
    [52]
    Stockburger J T, Grabert H. Exact c-number representation of non-Markovian quantum dissipation. Phys. Rev. Lett., 2002, 88 (17): 170407. doi: 10.1103/PhysRevLett.88.170407
    [53]
    Ke Y L, Zhao Y. An extension of stochastic hierarchy equations of motion for the equilibrium correlation functions. J. Chem. Phys., 2017, 146 (21): 214105. doi: 10.1063/1.4984260
    [54]
    Meyer H D, Manthe U, Cederbaum L S. The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett., 1990, 165 (1): 73–78. doi: 10.1016/0009-2614(90)87014-I
    [55]
    Wang H, Thoss M. Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys., 2003, 119 (3): 1289–1299. doi: 10.1063/1.1580111
    [56]
    Wang H, Pshenichnyuk I, Härtle R, et al. Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions. J. Chem. Phys., 2011, 135 (24): 244506. doi: 10.1063/1.3660206
    [57]
    Wilner E Y, Wang H, Thoss M, et al. Nonequilibrium quantum systems with electron-phonon interactions: Transient dynamics and approach to steady state. Phys. Rev. B, 2014, 89 (20): 205129. doi: 10.1103/PhysRevB.89.205129
    [58]
    Tanimura Y, Kubo R. Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath. J. Phys. Soc. Jpn., 1989, 58 (1): 101–114. doi: 10.1143/JPSJ.58.101
    [59]
    Tanimura Y. Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath. Phys. Rev. A, 1990, 41 (12): 6676–6687. doi: 10.1103/PhysRevA.41.6676
    [60]
    Tanimura Y, Wolynes P G. Quantum and classical Fokker-Planck equations for a Gaussian-Markovian noise bath. Phys. Rev. A, 1991, 43 (8): 4131–4142. doi: 10.1103/PhysRevA.43.4131
    [61]
    Ishizaki A, Tanimura Y. Quantum dynamics of system strongly coupled to low-temperature colored noise bath: Reduced hierarchy equations approach. J. Phys. Soc. Jpn., 2005, 74 (12): 3131–3134. doi: 10.1143/JPSJ.74.3131
    [62]
    Yan Y A, Yang F, Liu Y, et al. Hierarchical approach based on stochastic decoupling to dissipative systems. Chem. Phys. Lett., 2004, 395 (4-6): 216–221. doi: 10.1016/j.cplett.2004.07.036
    [63]
    Xu R X, Cui P, Li X Q, et al. Exact quantum master equation via the calculus on path integrals. J. Chem. Phys., 2005, 122 (4): 041103. doi: 10.1063/1.1850899
    [64]
    Xu R X, Yan Y J. Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach. Phys. Rev. E, 2007, 75 (3): 031107. doi: 10.1103/PhysRevE.75.031107
    [65]
    Tanimura Y. Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities. J. Chem. Phys., 2014, 141 (4): 044114. doi: 10.1063/1.4890441
    [66]
    Tanimura Y. Real-time and imaginary-time quantum hierarchal Fokker-Planck equations. J. Chem. Phys., 2015, 142 (14): 144110. doi: 10.1063/1.4916647
    [67]
    Shi Q, Chen L P, Nan G J, et al. Efficient hierarchical Liouville space propagator to quantum dissipative dynamics. J. Chem. Phys., 2009, 130 (8): 084105. doi: 10.1063/1.3077918
    [68]
    Tang Z F, Ouyang X L, Gong Z H, et al. Extended hierarchy equation of motion for the spin-boson model. J. Chem. Phys., 2015, 143 (22): 224112. doi: 10.1063/1.4936924
    [69]
    Duan C R, Wang Q L, Tang Z F, et al. The study of an extended hierarchy equation of motion in the spin-boson model: The cutoff function of the sub-Ohmic spectral density. J. Chem. Phys., 2017, 147 (16): 164112. doi: 10.1063/1.4997669
    [70]
    Duan C R, Tang Z F, Cao J S, et al. Zero-temperature localization in a sub-Ohmic spin-boson model investigated by an extended hierarchy equation of motion. Phys. Rev. B, 2017, 95: 214308. doi: 10.1103/PhysRevB.95.214308
    [71]
    Shi Q, Xu Y, Yan Y M, et al. Efficient propagation of the hierarchical equations of motion using the matrix product state method. J. Chem. Phys., 2018, 148 (17): 174102. doi: 10.1063/1.5026753
    [72]
    Yan Y M, Xing T, Shi Q. A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes. J. Chem. Phys., 2020, 153 (20): 204109. doi: 10.1063/5.0027962
    [73]
    Chen L P, Zheng R H, Jing Y Y, et al. Simulation of the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex using the hierarchical equations of motion method. J. Chem. Phys., 2011, 134 (19): 194508. doi: 10.1063/1.3589982
    [74]
    Hein B, Kreisbeck C, Kramer T, et al. Modelling of oscillations in two-dimensional echo-spectra of the Fenna-Matthews-Olson complex. New J. Phys., 2012, 14 (2): 023018. doi: 10.1088/1367-2630/14/2/023018
    [75]
    Tanimura Y. Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM). J. Chem. Phys., 2020, 153 (2): 020901. doi: 10.1063/5.0011599
    [76]
    Dijkstra A G, Tanimura Y. Non-Markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett., 2010, 104 (25): 250401. doi: 10.1103/PhysRevLett.104.250401
    [77]
    Ma J, Sun Z, Wang X G, et al. Entanglement dynamics of two qubits in a common bath. Phys. Rev. A, 2012, 85 (6): 062323. doi: 10.1103/PhysRevA.85.062323
    [78]
    Song L Z, Shi Q. Hierarchical equations of motion method applied to nonequilibrium heat transport in model molecular junctions: Transient heat current and high-order moments of the current operator. Phys. Rev. B, 2017, 95 (6): 064308. doi: 10.1103/PhysRevB.95.064308
    [79]
    Jin J S, Zheng X, Yan Y J. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. J. Chem. Phys., 2008, 128 (23): 234703. doi: 10.1063/1.2938087
    [80]
    Li Z H, Tong N H, Zheng X, et al. Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems. Phys. Rev. Lett., 2012, 109 (26): 266403. doi: 10.1103/PhysRevLett.109.266403
    [81]
    Wang X L, Yang L Q, Ye L Z, et al. Precise control of local spin states in an adsorbed magnetic molecule with an STM tip: Theoretical insights from first-principles-based simulation. J. Phys. Chem. Lett., 2018, 9 (9): 2418–2425. doi: 10.1021/acs.jpclett.8b00808
    [82]
    Zhuang Q F, Wang X L, Ye L Z, et al. Origin of asymmetric splitting of Kondo peak in spin-polarized scanning tunneling spectroscopy: Insights from first-principles-based simulations. J. Phys. Chem. Lett., 2022, 13 (9): 2094–2100. doi: 10.1021/acs.jpclett.2c00228
    [83]
    Dan X H, Xu M, Stockburger J T, et al. Efficient low temperature simulations for fermionic reservoirs with the hierarchical equations of motion method: Application to the Anderson impurity model. arXiv: 2211.04089, 2022.
    [84]
    Ye L Z, Wang X L, Hou D, et al. HEOM-QUICK: A program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems. WIREs Comput. Mol. Sci., 2016, 6 (6): 608–638. doi: 10.1002/wcms.1269
    [85]
    Wang Y, Zheng X, Yang J L. Kondo screening and spin excitation in few-layer CoPc molecular assembly stacking on Pb (111) surface: A DFT+ HEOM study. J. Chem. Phys., 2016, 145 (15): 154301. doi: 10.1063/1.4964675
    [86]
    Wang X L, Hou D, Zheng X, et al. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study. J. Chem. Phys., 2016, 144 (3): 034101. doi: 10.1063/1.4939843
    [87]
    Schinabeck C, Erpenbeck A, Härtle R, et al. Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems. Phys. Rev. B, 2016, 94 (20): 201407. doi: 10.1103/PhysRevB.94.201407
    [88]
    Schinabeck C, Härtle R, Thoss M. Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems: Reservoir formulation and application to vibrational instabilities. Phys. Rev. B, 2018, 97 (23): 235429. doi: 10.1103/PhysRevB.97.235429
    [89]
    Härtle R, Millis A J. Formation of nonequilibrium steady states in interacting double quantum dots: When coherences dominate the charge distribution. Phys. Rev. B, 2014, 90 (24): 245426. doi: 10.1103/PhysRevB.90.245426
    [90]
    Kaspar C, Thoss M. Efficient steady-state solver for the hierarchical equations of motion approach: Formulation and application to charge transport through nanosystems. J. Phys. Chem. A, 2021, 125 (23): 5190–5200. doi: 10.1021/acs.jpca.1c02863
    [91]
    Bätge J, Ke Y, Kaspar C, et al. Nonequilibrium open quantum systems with multiple bosonic and fermionic environments: A hierarchical equations of motion approach. Phys. Rev. B, 2021, 103 (23): 235413. doi: 10.1103/PhysRevB.103.235413
    [92]
    Strümpfer J, Schulten K. Open quantum dynamics calculations with the hierarchy equations of motion on parallel computers. J. Chem. Theory Comput., 2012, 8 (8): 2808–2816. doi: 10.1021/ct3003833
    [93]
    Yan Y M, Xu M, Li T C, et al. Efficient propagation of the hierarchical equations of motion using the Tucker and hierarchical Tucker tensors. J. Chem. Phys., 2021, 154 (19): 194104. doi: 10.1063/5.0050720
    [94]
    Werner P, Oka T, Eckstein M, et al. Weak-coupling quantum Monte Carlo calculations on the Keldysh contour: Theory and application to the current-voltage characteristics of the Anderson model. Phys. Rev. B, 2010, 81 (3): 035108. doi: 10.1103/PhysRevB.81.035108
    [95]
    Cohen G, Rabani E. Memory effects in nonequilibrium quantum impurity models. Phys. Rev. B, 2011, 84 (7): 075150. doi: 10.1103/PhysRevB.84.075150
    [96]
    Cohen G, Gull E, Reichman D R, et al. Numerically exact long-time magnetization dynamics at the nonequilibrium Kondo crossover of the Anderson impurity model. Phys. Rev. B, 2013, 87 (19): 195108. doi: 10.1103/PhysRevB.87.195108
    [97]
    Erpenbeck A, Hertlein C, Schinabeck C, et al. Extending the hierarchical quantum master equation approach to low temperatures and realistic band structures. J. Chem. Phys., 2018, 149 (6): 064106. doi: 10.1063/1.5041716
    [98]
    Cui L, Zhang H D, Zheng X, et al. Highly efficient and accurate sum-over-poles expansion of Fermi and Bose functions at near zero temperatures: Fano spectrum decomposition scheme. J. Chem. Phys., 2019, 151 (2): 024110. doi: 10.1063/1.5096945
    [99]
    Ikeda T, Scholes G D. Generalization of the hierarchical equations of motion theory for efficient calculations with arbitrary correlation functions. J. Chem. Phys., 2020, 152 (20): 204101. doi: 10.1063/5.0007327
    [100]
    Zhang D C, Ding X, Zhang H D, et al. Adiabatic terminator for fermionic hierarchical equations of motion. Chin. J. Chem. Phys., 2021, 34 (6): 905–914. doi: 10.1063/1674-0068/cjcp2110212
    [101]
    Dunn I S, Tempelaar R, Reichman D R. Removing instabilities in the hierarchical equations of motion: Exact and approximate projection approaches. J. Chem. Phys., 2019, 150 (18): 184109. doi: 10.1063/1.5092616
    [102]
    Hu J, Xu R X, Yan Y J. Communication: Padé spectrum decomposition of Fermi function and Bose function. J. Chem. Phys., 2010, 133 (10): 101106. doi: 10.1063/1.3484491
    [103]
    Hu J, Luo M, Jiang F, et al. Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems. J. Chem. Phys., 2011, 134 (24): 244106. doi: 10.1063/1.3602466
    [104]
    Ye L Z, Zhang H D, Wang Y, et al. Low-frequency logarithmic discretization of the reservoir spectrum for improving the efficiency of hierarchical equations of motion approach. J. Chem. Phys., 2017, 147 (7): 074111. doi: 10.1063/1.4999027
    [105]
    Chen Z H, Wang Y, Zheng X, et al. Universal time-domain Prony fitting decomposition for optimized hierarchical quantum master equations. J. Chem. Phys., 2022, 156: 221102. doi: 10.1063/5.0095961
    [106]
    Hou D, Wang S K, Wang R L, et al. Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov-Bohm interferometers. J. Chem. Phys., 2015, 142 (10): 104112. doi: 10.1063/1.4914514
    [107]
    Zheng X, Xu R X, Xu J, et al. Hierarchical equations of motion for quantum dissipation and quantum transport. Prog. Chem., 2012, 24 (6): 1129–1152.
    [108]
    Croy A, Saalmann U. Partial fraction decomposition of the Fermi function. Phys. Rev. B, 2009, 80 (7): 073102. doi: 10.1103/PhysRevB.80.073102
    [109]
    Zheng X, Jin J S, Welack S, et al. Numerical approach to time-dependent quantum transport and dynamical Kondo transition. J. Chem. Phys., 2009, 130 (16): 164708. doi: 10.1063/1.3123526
    [110]
    Ozaki T. Continued fraction representation of the Fermi-Dirac function for large-scale electronic structure calculations. Phys. Rev. B, 2007, 75 (3): 035123. doi: 10.1103/PhysRevB.75.035123
    [111]
    Ding J J, Wang Y, Zhang H D, et al. Fokker-Planck quantum master equation for mixed quantum-semiclassical dynamics. J. Chem. Phys., 2017, 146 (2): 024104. doi: 10.1063/1.4973610
    [112]
    Zhang H D, Yan Y J. Onsets of hierarchy truncation and self-consistent Born approximation with quantum mechanics prescriptions invariance. J. Chem. Phys., 2015, 143 (21): 214112. doi: 10.1063/1.4936831
    [113]
    Tanimura Y. Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn., 2006, 75 (8): 082001. doi: 10.1143/JPSJ.75.082001
    [114]
    Han L, Zhang H D, Zheng X, et al. On the exact truncation tier of fermionic hierarchical equations of motion. J. Chem. Phys., 2018, 148 (23): 234108. doi: 10.1063/1.5034776
    [115]
    Ye L Z, Hou D, Zheng X, et al. Local temperatures of strongly-correlated quantum dots out of equilibrium. Phys. Rev. B, 2015, 91 (20): 205106. doi: 10.1103/PhysRevB.91.205106
    [116]
    Schinabeck C, Thoss M. Hierarchical quantum master equation approach to current fluctuations in nonequilibrium charge transport through nanosystems. Phys. Rev. B, 2020, 101 (7): 075422. doi: 10.1103/PhysRevB.101.075422
    [117]
    Härtle R, Cohen G, Reichman D R, et al. Transport through an Anderson impurity: Current ringing, nonlinear magnetization, and a direct comparison of continuous-time quantum Monte Carlo and hierarchical quantum master equations. Phys. Rev. B, 2015, 92 (8): 085430. doi: 10.1103/PhysRevB.92.085430
    [118]
    Shi Q, Chen L P, Nan G J, et al. Electron transfer dynamics: Zusman equation versus exact theory. J. Chem. Phys., 2009, 130 (16): 164518. doi: 10.1063/1.3125003
    [119]
    Wang Y, Zheng X, Li B, et al. Understanding the Kondo resonance in the d-CoPc/Au (111) adsorption system. J. Chem. Phys., 2014, 141 (8): 084713. doi: 10.1063/1.4893953
    [120]
    Wang Y, Zheng X, Yang J L. Environment-modulated Kondo phenomena in FePc/Au (111) adsorption systems. Phys. Rev. B, 2016, 93 (12): 125114. doi: 10.1103/PhysRevB.93.125114
    [121]
    Gong H, Wang Y, Zhang H D, et al. Thermodynamic free-energy spectrum theory for open quantum systems. J. Chem. Phys., 2020, 153 (21): 214115. doi: 10.1063/5.0028429
    [122]
    Gong H, Wang Y, Zheng X, et al. Nonequilibrium work distributions in controlled system-bath mixing processes. arXiv: 2203.16367, 2022.
    [123]
    Ding X, Zhang D C, Ye L Z, et al. On the practical truncation tier of fermionic hierarchical equations of motion. J. Chem. Phys., 2022, 157: 224107. doi: 10.1063/5.0130355
    [124]
    Zheng X, Jin J S, Yan Y J. Dynamic Coulomb blockade in single-lead quantum dots. New J. Phys., 2008, 10 (9): 093016. doi: 10.1088/1367-2630/10/9/093016
    [125]
    Tanaka M, Tanimura Y. Multistate electron transfer dynamics in the condensed phase: Exact calculations from the reduced hierarchy equations of motion approach. J. Chem. Phys., 2010, 132 (21): 214502. doi: 10.1063/1.3428674
    [126]
    Cheng Y X, Li Z H, Wei J H, et al. Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes. J. Chem. Phys., 2018, 148 (13): 134111. doi: 10.1063/1.5013038
    [127]
    Rahman H, Kleinekathöfer U. Chebyshev hierarchical equations of motion for systems with arbitrary spectral densities and temperatures. J. Chem. Phys., 2019, 150 (24): 244104. doi: 10.1063/1.5100102
    [128]
    Kreisbeck C, Kramer T. Long-lived electronic coherence in dissipative exciton dynamics of light-harvesting complexes. J. Phys. Chem. Lett., 2012, 3 (19): 2828–2833. doi: 10.1021/jz3012029
    [129]
    Tanimura Y. Reduced hierarchy equations of motion approach with Drude plus Brownian spectral distribution: Probing electron transfer processes by means of two-dimensional correlation spectroscopy. J. Chem. Phys., 2012, 137 (22): 22A550. doi: 10.1063/1.4766931
    [130]
    Cao J A, Ye L Z, He D W, et al. Magnet-free time-resolved magnetic circular dichroism with pulsed vector beams. J. Phys. Chem. Lett., 2022, 13: 11300–11306. doi: 10.1021/acs.jpclett.2c03370
    [131]
    Green D, Humphries B S, Dijkstra A G, et al. Quantifying non-Markovianity in underdamped versus overdamped environments and its effect on spectral lineshape. J. Chem. Phys., 2019, 151 (17): 174112. doi: 10.1063/1.5119300
    [132]
    Dijkstra A G, Tanimura Y. Linear and third- and fifth-order nonlinear spectroscopies of a charge transfer system coupled to an underdamped vibration. J. Chem. Phys., 2015, 142 (21): 212423. doi: 10.1063/1.4917025
    [133]
    Xu J, Zhang H D, Xu R X, et al. Correlated driving and dissipation in two-dimensional spectroscopy. J. Chem. Phys., 2013, 138 (2): 024106. doi: 10.1063/1.4773472
    [134]
    Flindt C, Novotnỳ T, Braggio A, et al. Counting statistics of transport through Coulomb blockade nanostructures: High-order cumulants and non-Markovian effects. Phys. Rev. B, 2010, 82 (15): 155407. doi: 10.1103/PhysRevB.82.155407
    [135]
    Koch J, von Oppen F. Franck-Condon blockade and giant Fano factors in transport through single molecules. Phys. Rev. Lett., 2005, 94 (20): 206804. doi: 10.1103/PhysRevLett.94.206804
    [136]
    Leturcq R, Stampfer C, Inderbitzin K, et al. Franck-Condon blockade in suspended carbon nanotube quantum dots. Nat. Phys., 2009, 5 (5): 327–331. doi: 10.1038/nphys1234
    [137]
    Schinabeck C, Härtle R, Weber H B, et al. Current noise in single-molecule junctions induced by electronic-vibrational coupling. Phys. Rev. B, 2014, 90 (7): 075409. doi: 10.1103/PhysRevB.90.075409
    [138]
    Secker D, Wagner S, Ballmann S, et al. Resonant vibrations, peak broadening, and noise in single molecule contacts: The nature of the first conductance peak. Phys. Rev. Lett., 2011, 106 (13): 136807. doi: 10.1103/PhysRevLett.106.136807
    [139]
    Gao L, Ji W, Hu Y B, et al. Site-specific Kondo effect at ambient temperatures in iron-based molecules. Phys. Rev. Lett., 2007, 99 (10): 106402. doi: 10.1103/PhysRevLett.99.106402
    [140]
    Wang Y, Li X G, Zheng X, et al. Manipulation of spin and magnetic anisotropy in bilayer magnetic molecular junctions. Phys. Chem. Chem. Phys., 2018, 20 (41): 26396–26404. doi: 10.1039/C8CP05759A
    [141]
    Zuo L J, Zhuang Q F, Ye L Z, et al. Unveiling the decisive factor for the sharp transition in the scanning tunneling spectroscopy of a single nickelocene molecule. J. Phys. Chem. Lett., 2022, 13: 11262–11270. doi: 10.1021/acs.jpclett.2c03168
    [142]
    Zhang D C, Zuo L J, Ye L Z, et al. Hierarchical equations of motion approach for accurate characterization of spin excitations in quantum impurity systems. J. Chem. Phys., 2023, 158: 014106. doi: 10.1063/5.0131739
    [143]
    Madhavan V, Chen W, Jamneala T, et al. Local spectroscopy of a Kondo impurity: Co on Au (111). Phys. Rev. B, 2001, 64 (16): 165412. doi: 10.1103/PhysRevB.64.165412
    [144]
    Zhang D C, Zheng X, Di Ventra M. Local temperatures out of equilibrium. Phys. Rep., 2019, 830: 1–66. doi: 10.1016/j.physrep.2019.10.003
    [145]
    Shastry A, Stafford C A. Temperature and voltage measurement in quantum systems far from equilibrium. Phys. Rev. B, 2016, 94 (15): 155433. doi: 10.1103/PhysRevB.94.155433
    [146]
    Engquist H L, Anderson P W. Definition and measurement of the electrical and thermal resistances. Phys. Rev. B, 1981, 24 (2): 1151. doi: 10.1103/PhysRevB.24.1151
    [147]
    Meair J, Bergfield J P, Stafford C A, et al. Local temperature of out-of-equilibrium quantum electron systems. Phys. Rev. B, 2014, 90 (3): 035407. doi: 10.1103/PhysRevB.90.035407
    [148]
    Dubi Y, Di Ventra M. Thermoelectric effects in nanoscale junctions. Nano Lett., 2009, 9 (1): 97–101. doi: 10.1021/nl8025407
    [149]
    Li T C, Yan Y M, Shi Q. A low-temperature quantum Fokker-Planck equation that improves the numerical stability of the hierarchical equations of motion for the Brownian oscillator spectral density. J. Chem. Phys., 2022, 156 (6): 064107. doi: 10.1063/5.0082108
    [150]
    Baumann S, Paul W, Choi T, et al. Electron paramagnetic resonance of individual atoms on a surface. Science, 2015, 350 (6259): 417–420. doi: 10.1126/science.aac8703
    [151]
    Verlhac B, Bachellier N, Garnier L, et al. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science, 2019, 366 (6465): 623–627. doi: 10.1126/science.aax8222
    [152]
    Czap G, Wagner P J, Xue F, et al. Probing and imaging spin interactions with a magnetic single-molecule sensor. Science, 2019, 364 (6441): 670–673. doi: 10.1126/science.aaw7505
    [153]
    Zhang X, Wolf C, Wang Y, et al. Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions. Nat. Chem., 2022, 14 (1): 59–65. doi: 10.1038/s41557-021-00827-7
    [154]
    Loth S, Etzkorn M, Lutz C P, et al. Measurement of fast electron spin relaxation times with atomic resolution. Science, 2010, 329 (5999): 1628–1630. doi: 10.1126/science.1191688
    [155]
    Yang K, Paul W, Phark S H, et al. Coherent spin manipulation of individual atoms on a surface. Science, 2019, 366 (6464): 509–512. doi: 10.1126/science.aay6779
    [156]
    Veldman L M, Farinacci L, Rejali R, et al. Free coherent evolution of a coupled atomic spin system initialized by electron scattering. Science, 2021, 372 (6545): 964–968. doi: 10.1126/science.abg8223
  • 加载中

Catalog

    Figure  1.  Schematic diagram for the hierarchal structure of the HEOM. Each green discs represents a density operator. $ \rho^{(0)} $ is the reduced-system density operator and $ \rho^{(n>0)} $ is the $ n $th-tier ADOs. Purple double-arrows denote the couplings between two density operators. The size of the hierarchy space is set by the horizontal M and vertical L dimensional parameters. M is the number of basis functions to unravel the environmental memory and L denotes the truncation tier. Reprinted with permission from Ref. [114]. Copyright 2018, American Institute of Physics.

    Figure  2.  (a) The expansion of the Fermi function based on the PSD scheme (green/blue dotted line), the FSD sheme (yellow/red solid line), and the exact results (empty triangles). (b) The low-temperature correction part in the FSD scheme (red solid line) expanded by the Fano functions and the numerical error (blue solid line). The original and reference temperatures are in unit of $ \Gamma $: $ T = 0.001 $, $ T_0 = 0.1 $. Reprinted with permission from Ref. [98]. Copyright 2019, American Institute of Physics.

    Figure  3.  Impurity spectral function $ A(\omega) $ of an SIAM at different truncation tiers $ L $. The scattered data are obtained by the HEOM calculations with zero-value terminator and adiabatic terminator, respectively. Parameters here are all in unit of $ \Gamma $: $ T = 0.04 $, $\epsilon_{\uparrow} = \epsilon_{\downarrow} = -U/2 = -4$, and $ W = 20 $. The inset shows the Kondo resonance peak in the vicinity of $ \omega = 0 $. Reprinted with permission from Ref. [100]. Copyright 2021, American Institute of Physics.

    Figure  4.  (a) The time evolution of ac voltage-driven electric current. The arrows represent the time of divergence start. The parameters are (in units of $ \Delta $): $ U = -2\epsilon_d = 12 $, $ \Delta_L = \Delta_R = 0.5 $, $ T = 0.05 $, $ W = 20 $, $ eV_0 = 1.5 $, and $ \omega = 0.3 $. $ \chi $ represents different parameter sets adopted for the FSD scheme, among which $ \chi = 1000 $ (marked by the star in the legend) is the most accurate. Reprinted with permission from Ref. [22]. Copyright 2020, American Institute of Physics. (b) The variation of real-time electric current $ I_L(t) $ driven by ac voltage, flowing from impurity to left reservoir. The results are calculated by HEOM-adia and HEOM-zero at different truncation tier $L$, respectively. The arrows mark the time from which the results start to diverge. The inset shows the long-time evolution of $ I_L(t) $ calculated by HEOM-adia truncated at $ L $ = 4. The parameters adopted are all in unit of $ \Gamma $: $ V_0 = 3.0 $, $ \omega_0 = 1.2 $, $ T = 0.1 $, $\epsilon_{\uparrow} = \epsilon_{\downarrow} = -U/2 = -12$, and $ W = 40 $. Reprinted with permission from Ref. [100]. Copyright 2021, American Institute of Physics.

    Figure  5.  The $ dI/dV $ spectra calculated by the DFT+HEOM method for the (a) FePc/FePc/Pb(111) and (b) FePc/ CoPc/Pb(111) composites at temperature T = 60 K. Reprinted with permission from Ref. [140]. Copyright 2018, Royal Society of Chemistry.

    Figure  6.  The differential conductance $ dI/dV $ spectra for the SIAM corresponding to the tip/FeOEP/Pb(111) composite with different tip displacement (a) $\Delta z = -350\;{\rm{pm}}$, (b) $ \Delta z = -450\;{\rm{pm}} $. The inset of (b) shows the schematic diagram for the energy levels of local spin states. Reprinted with permission from Ref. [81]. Copyright 2018, American Chemical Society.

    Figure  7.  (a) Calculated and (b) experimentally measured $ dI/dV $ spectra at several tip displacements $ z $. (c) The splitting width $ \Delta V $ between two asymmetric peaks verus the difference of hybridization strengths $ \Delta E $. The gray line gives a linearly fitting result. Reprinted with permission from Ref. [82]. Copyright 2022, American Chemical Society.

    Figure  8.  The distribution of local temperature $ T^{\ast}_i $ along a linear chain consisting of four impurities based on the ZCC and the LMPC under a thermal bias with (a) a strong impurity-lead coupling strength $ \Delta_\alpha = 0.5\Delta \,(\alpha = L, R) $ and (b) a weak impurity-lead coupling strength $ \Delta_\alpha = 0.0125\Delta $. $ t $ represents the coupling strength between two adjacent impurities. The inset shows that the impurity spectral function $ A(\omega) $ calculated by the HEOM method at different $ \Delta_\alpha $ and $ t $. Reprinted with permission from Ref. [25]. Copyright 2021, American Physical Society.

    [1]
    Thoss M, Evers F. Perspective: Theory of quantum transport in molecular junctions. J. Chem. Phys., 2018, 148 (3): 030901. doi: 10.1063/1.5003306
    [2]
    Lambert N, Raheja T, Ahmed S, et al. BoFiN-HEOM: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics. arXiv: 2010.10806, 2020.
    [3]
    Uzma F, Yang L Q, He D W, et al. Understanding the sub-meV precision-tuning of magnetic anisotropy of single-molecule junction. J. Phys. Chem. C, 2021, 125 (12): 6990–6997. doi: 10.1021/acs.jpcc.1c01398
    [4]
    Yang L Q, Wang X L, Uzma F, et al. Evolution of magnetic anisotropy of an organometallic molecule in a mechanically controlled break junction: The roles of connecting electrodes. J. Phys. Chem. C, 2019, 123 (50): 30754–30764. doi: 10.1021/acs.jpcc.9b10156
    [5]
    Song K, Shi Q. Theoretical study of photoinduced proton coupled electron transfer reaction using the non-perturbative hierarchical equations of motion method. J. Chem. Phys., 2017, 146 (18): 184108. doi: 10.1063/1.4982928
    [6]
    Weiss U. Quantum Dissipative Systems. Singapore: World Scientific, 2012.
    [7]
    Joachim C, Gimzewski J K, Aviram A. Electronics using hybrid-molecular and mono-molecular devices. Nature, 2000, 408 (6812): 541–548. doi: 10.1038/35046000
    [8]
    Lu W, Lieber C M. Nanoelectronics from the bottom up. Nat. Mater., 2007, 6: 841–850. doi: 10.1038/nmat2028
    [9]
    Monroe C. Quantum information processing with atoms and photons. Nature, 2002, 416 (6877): 238–246. doi: 10.1038/416238a
    [10]
    Biolatti E, Iotti R C, Zanardi P, et al. Quantum information processing with semiconductor macroatoms. Phys. Rev. Lett., 2000, 85 (26): 5647–5650. doi: 10.1103/PhysRevLett.85.5647
    [11]
    Mannini M, Pineider F, Danieli C, et al. Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature, 2010, 468 (7322): 417–421. doi: 10.1038/nature09478
    [12]
    Sanvito S. Molecular spintronics. Chem. Soc. Rev., 2011, 40 (6): 3336–3355. doi: 10.1039/c1cs15047b
    [13]
    Aspuru-Guzik A, Dutoi A D, Love P J, et al. Simulated quantum computation of molecular energies. Science, 2005, 309 (5741): 1704–1707. doi: 10.1126/science.1113479
    [14]
    DeMille D. Quantum computation with trapped polar molecules. Phys. Rev. Lett., 2002, 88 (6): 067901. doi: 10.1103/PhysRevLett.88.067901
    [15]
    Soe W H, Manzano C, Robles R, et al. On-surface atom-by-atom-assembled aluminum binuclear tetrabenzophenazine organometallic magnetic complex. Nano Lett., 2019, 20 (1): 384–388. doi: 10.1021/acs.nanolett.9b04040
    [16]
    Parks J J, Champagne A R, Costi T A, et al. Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science, 2010, 328 (5984): 1370–1373. doi: 10.1126/science.1186874
    [17]
    Kouwenhoven L, Glazman L. Revival of the Kondo effect. Phys. World, 2001, 14 (1): 33–38. doi: 10.1088/2058-7058/14/1/28
    [18]
    Zhao A D, Li Q X, Chen L, et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science, 2005, 309 (5740): 1542–1544. doi: 10.1126/science.1113449
    [19]
    Li X Y, Zhu L, Li B, et al. Molecular molds for regularizing Kondo states at atom/metal interfaces. Nat. Commun., 2020, 11: 2566. doi: 10.1038/s41467-019-13993-7
    [20]
    Pershin Y V, Di Ventra M. Memory effects in complex materials and nanoscale systems. Adv. Phys., 2011, 60 (2): 145–227. doi: 10.1080/00018732.2010.544961
    [21]
    Zheng X, Yan Y J, Di Ventra M. Kondo memory in driven strongly correlated quantum dots. Phys. Rev. Lett., 2013, 111 (8): 086601. doi: 10.1103/PhysRevLett.111.086601
    [22]
    Zhang H D, Cui L, Gong H, et al. Hierarchical equations of motion method based on Fano spectrum decomposition for low temperature environments. J. Chem. Phys., 2020, 152 (6): 064107. doi: 10.1063/1.5136093
    [23]
    Stewart G R. Unconventional superconductivity. Adv. Phys., 2017, 66 (2): 75–196. doi: 10.1080/00018732.2017.1331615
    [24]
    Ye L Z, Zheng X, Yan Y J, et al. Thermodynamic meaning of local temperature of nonequilibrium open quantum systems. Phys. Rev. B, 2016, 94 (24): 245105. doi: 10.1103/PhysRevB.94.245105
    [25]
    Zeng X Z, Ye L Z, Zhang D C, et al. Effect of quantum resonances on local temperature in nonequilibrium open systems. Phys. Rev. B, 2021, 103 (8): 085411. doi: 10.1103/PhysRevB.103.085411
    [26]
    Coronado E. Molecular magnetism: From chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater., 2020, 5 (2): 87–104. doi: 10.1038/s41578-019-0146-8
    [27]
    Otte A F, Ternes M, von Bergmann K, et al. The role of magnetic anisotropy in the Kondo effect. Nat. Phys., 2008, 4 (11): 847–850. doi: 10.1038/nphys1072
    [28]
    Heinrich B W, Braun L, Pascual J I, et al. Tuning the magnetic anisotropy of single molecules. Nano Lett., 2015, 15 (6): 4024–4028. doi: 10.1021/acs.nanolett.5b00987
    [29]
    Minamitani E, Tsukahara N, Matsunaka D, et al. Symmetry-driven novel Kondo effect in a molecule. Phys. Rev. Lett., 2012, 109 (8): 086602. doi: 10.1103/PhysRevLett.109.086602
    [30]
    Yang K, Phark S H, Bae Y, et al. Probing resonating valence bond states in artificial quantum magnets. Nat. Commun., 2021, 12: 993. doi: 10.1038/s41467-020-20314-w
    [31]
    Wilson K G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys., 1975, 47 (4): 773. doi: 10.1103/RevModPhys.47.773
    [32]
    Bulla R, Costi T A, Pruschke T. Numerical renormalization group method for quantum impurity systems. Reviews of Modern Physics, 2008, 80 (2): 395–450. doi: 10.1103/RevModPhys.80.395
    [33]
    White S R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 1992, 69 (19): 2863–2866. doi: 10.1103/PhysRevLett.69.2863
    [34]
    White S R, Feiguin A E. Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett., 2004, 93 (7): 076401. doi: 10.1103/PhysRevLett.93.076401
    [35]
    Yao Y, Sun K W, Luo Z, et al. Full quantum dynamics simulation of a realistic molecular system using the adaptive time-dependent density matrix renormalization group method. J. Phys. Chem. Lett., 2018, 9 (2): 413–419. doi: 10.1021/acs.jpclett.7b03224
    [36]
    Büsser C A, Heidrich-Meisner F. Inducing spin correlations and entanglement in a double quantum dot through nonequilibrium transport. Phys. Rev. Lett., 2013, 111 (24): 246807. doi: 10.1103/PhysRevLett.111.246807
    [37]
    Caffarel M, Krauth W. Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity. Phys. Rev. Lett., 1994, 72 (10): 1545–1548. doi: 10.1103/PhysRevLett.72.1545
    [38]
    Hirsch J E, Fye R M. Monte Carlo method for magnetic impurities in metals. Phys. Rev. Lett., 1986, 56 (23): 2521–2524. doi: 10.1103/PhysRevLett.56.2521
    [39]
    Cohen G, Gull E, Reichman D R, et al. Taming the dynamical sign problem in real-time evolution of quantum many-body problems. Phys. Rev. Lett., 2015, 115 (26): 266802. doi: 10.1103/PhysRevLett.115.266802
    [40]
    Ridley M, Gull E, Cohen G. Lead geometry and transport statistics in molecular junctions. J. Chem. Phys., 2019, 150 (24): 244107. doi: 10.1063/1.5096244
    [41]
    Weiss S, Eckel J, Thorwart M, et al. Iterative real-time path integral approach to nonequilibrium quantum transport. Phys. Rev. B, 2008, 77 (19): 195316. doi: 10.1103/PhysRevB.77.195316
    [42]
    Mühlbacher L, Rabani E. Real-time path integral approach to nonequilibrium many-body quantum systems. Phys. Rev. Lett., 2008, 100 (17): 176403. doi: 10.1103/PhysRevLett.100.176403
    [43]
    Agarwalla B K, Segal D. The Anderson impurity model out-of-equilibrium: Assessing the accuracy of simulation techniques with an exact current-occupation relation. J. Chem. Phys., 2017, 147 (5): 054104. doi: 10.1063/1.4996562
    [44]
    Segal D, Millis A J, Reichman D R. Numerically exact path-integral simulation of nonequilibrium quantum transport and dissipation. Phys. Rev. B, 2010, 82 (20): 205323. doi: 10.1103/PhysRevB.82.205323
    [45]
    Simine L, Segal D. Path-integral simulations with fermionic and bosonic reservoirs: Transport and dissipation in molecular electronic junctions. J. Chem. Phys., 2013, 138 (21): 214111. doi: 10.1063/1.4808108
    [46]
    Kilgour M, Agarwalla B K, Segal D. Path-integral methodology and simulations of quantum thermal transport: Full counting statistics approach. J. Chem. Phys., 2019, 150 (8): 084111. doi: 10.1063/1.5084949
    [47]
    Cohen G, Gull E, Reichman D R, et al. Green’s functions from real-time bold-line Monte Carlo calculations: Spectral properties of the nonequilibrium Anderson impurity model. Phys. Rev. Lett., 2014, 112 (14): 146802. doi: 10.1103/PhysRevLett.112.146802
    [48]
    Rahman H, Kleinekathöfer U. Non-equilibrium Green’s function transport theory for molecular junctions with general molecule-lead coupling and temperatures. J. Chem. Phys., 2018, 149 (23): 234108. doi: 10.1063/1.5054312
    [49]
    Cohen G, Galperin M. Green’s function methods for single molecule junctions. J. Chem. Phys., 2020, 152 (9): 090901. doi: 10.1063/1.5145210
    [50]
    Jacob D. Simulation of inelastic spin flip excitations and Kondo effect in STM spectroscopy of magnetic molecules on metal substrates. J. Phys.: Condens. Matter, 2018, 30 (35): 354003. doi: 10.1088/1361-648X/aad523
    [51]
    Han L, Chernyak V, Yan Y A, et al. Stochastic representation of non-Markovian fermionic quantum dissipation. Phys. Rev. Lett., 2019, 123 (5): 050601. doi: 10.1103/PhysRevLett.123.050601
    [52]
    Stockburger J T, Grabert H. Exact c-number representation of non-Markovian quantum dissipation. Phys. Rev. Lett., 2002, 88 (17): 170407. doi: 10.1103/PhysRevLett.88.170407
    [53]
    Ke Y L, Zhao Y. An extension of stochastic hierarchy equations of motion for the equilibrium correlation functions. J. Chem. Phys., 2017, 146 (21): 214105. doi: 10.1063/1.4984260
    [54]
    Meyer H D, Manthe U, Cederbaum L S. The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett., 1990, 165 (1): 73–78. doi: 10.1016/0009-2614(90)87014-I
    [55]
    Wang H, Thoss M. Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys., 2003, 119 (3): 1289–1299. doi: 10.1063/1.1580111
    [56]
    Wang H, Pshenichnyuk I, Härtle R, et al. Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions. J. Chem. Phys., 2011, 135 (24): 244506. doi: 10.1063/1.3660206
    [57]
    Wilner E Y, Wang H, Thoss M, et al. Nonequilibrium quantum systems with electron-phonon interactions: Transient dynamics and approach to steady state. Phys. Rev. B, 2014, 89 (20): 205129. doi: 10.1103/PhysRevB.89.205129
    [58]
    Tanimura Y, Kubo R. Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath. J. Phys. Soc. Jpn., 1989, 58 (1): 101–114. doi: 10.1143/JPSJ.58.101
    [59]
    Tanimura Y. Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath. Phys. Rev. A, 1990, 41 (12): 6676–6687. doi: 10.1103/PhysRevA.41.6676
    [60]
    Tanimura Y, Wolynes P G. Quantum and classical Fokker-Planck equations for a Gaussian-Markovian noise bath. Phys. Rev. A, 1991, 43 (8): 4131–4142. doi: 10.1103/PhysRevA.43.4131
    [61]
    Ishizaki A, Tanimura Y. Quantum dynamics of system strongly coupled to low-temperature colored noise bath: Reduced hierarchy equations approach. J. Phys. Soc. Jpn., 2005, 74 (12): 3131–3134. doi: 10.1143/JPSJ.74.3131
    [62]
    Yan Y A, Yang F, Liu Y, et al. Hierarchical approach based on stochastic decoupling to dissipative systems. Chem. Phys. Lett., 2004, 395 (4-6): 216–221. doi: 10.1016/j.cplett.2004.07.036
    [63]
    Xu R X, Cui P, Li X Q, et al. Exact quantum master equation via the calculus on path integrals. J. Chem. Phys., 2005, 122 (4): 041103. doi: 10.1063/1.1850899
    [64]
    Xu R X, Yan Y J. Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach. Phys. Rev. E, 2007, 75 (3): 031107. doi: 10.1103/PhysRevE.75.031107
    [65]
    Tanimura Y. Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities. J. Chem. Phys., 2014, 141 (4): 044114. doi: 10.1063/1.4890441
    [66]
    Tanimura Y. Real-time and imaginary-time quantum hierarchal Fokker-Planck equations. J. Chem. Phys., 2015, 142 (14): 144110. doi: 10.1063/1.4916647
    [67]
    Shi Q, Chen L P, Nan G J, et al. Efficient hierarchical Liouville space propagator to quantum dissipative dynamics. J. Chem. Phys., 2009, 130 (8): 084105. doi: 10.1063/1.3077918
    [68]
    Tang Z F, Ouyang X L, Gong Z H, et al. Extended hierarchy equation of motion for the spin-boson model. J. Chem. Phys., 2015, 143 (22): 224112. doi: 10.1063/1.4936924
    [69]
    Duan C R, Wang Q L, Tang Z F, et al. The study of an extended hierarchy equation of motion in the spin-boson model: The cutoff function of the sub-Ohmic spectral density. J. Chem. Phys., 2017, 147 (16): 164112. doi: 10.1063/1.4997669
    [70]
    Duan C R, Tang Z F, Cao J S, et al. Zero-temperature localization in a sub-Ohmic spin-boson model investigated by an extended hierarchy equation of motion. Phys. Rev. B, 2017, 95: 214308. doi: 10.1103/PhysRevB.95.214308
    [71]
    Shi Q, Xu Y, Yan Y M, et al. Efficient propagation of the hierarchical equations of motion using the matrix product state method. J. Chem. Phys., 2018, 148 (17): 174102. doi: 10.1063/1.5026753
    [72]
    Yan Y M, Xing T, Shi Q. A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes. J. Chem. Phys., 2020, 153 (20): 204109. doi: 10.1063/5.0027962
    [73]
    Chen L P, Zheng R H, Jing Y Y, et al. Simulation of the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex using the hierarchical equations of motion method. J. Chem. Phys., 2011, 134 (19): 194508. doi: 10.1063/1.3589982
    [74]
    Hein B, Kreisbeck C, Kramer T, et al. Modelling of oscillations in two-dimensional echo-spectra of the Fenna-Matthews-Olson complex. New J. Phys., 2012, 14 (2): 023018. doi: 10.1088/1367-2630/14/2/023018
    [75]
    Tanimura Y. Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM). J. Chem. Phys., 2020, 153 (2): 020901. doi: 10.1063/5.0011599
    [76]
    Dijkstra A G, Tanimura Y. Non-Markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett., 2010, 104 (25): 250401. doi: 10.1103/PhysRevLett.104.250401
    [77]
    Ma J, Sun Z, Wang X G, et al. Entanglement dynamics of two qubits in a common bath. Phys. Rev. A, 2012, 85 (6): 062323. doi: 10.1103/PhysRevA.85.062323
    [78]
    Song L Z, Shi Q. Hierarchical equations of motion method applied to nonequilibrium heat transport in model molecular junctions: Transient heat current and high-order moments of the current operator. Phys. Rev. B, 2017, 95 (6): 064308. doi: 10.1103/PhysRevB.95.064308
    [79]
    Jin J S, Zheng X, Yan Y J. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. J. Chem. Phys., 2008, 128 (23): 234703. doi: 10.1063/1.2938087
    [80]
    Li Z H, Tong N H, Zheng X, et al. Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems. Phys. Rev. Lett., 2012, 109 (26): 266403. doi: 10.1103/PhysRevLett.109.266403
    [81]
    Wang X L, Yang L Q, Ye L Z, et al. Precise control of local spin states in an adsorbed magnetic molecule with an STM tip: Theoretical insights from first-principles-based simulation. J. Phys. Chem. Lett., 2018, 9 (9): 2418–2425. doi: 10.1021/acs.jpclett.8b00808
    [82]
    Zhuang Q F, Wang X L, Ye L Z, et al. Origin of asymmetric splitting of Kondo peak in spin-polarized scanning tunneling spectroscopy: Insights from first-principles-based simulations. J. Phys. Chem. Lett., 2022, 13 (9): 2094–2100. doi: 10.1021/acs.jpclett.2c00228
    [83]
    Dan X H, Xu M, Stockburger J T, et al. Efficient low temperature simulations for fermionic reservoirs with the hierarchical equations of motion method: Application to the Anderson impurity model. arXiv: 2211.04089, 2022.
    [84]
    Ye L Z, Wang X L, Hou D, et al. HEOM-QUICK: A program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems. WIREs Comput. Mol. Sci., 2016, 6 (6): 608–638. doi: 10.1002/wcms.1269
    [85]
    Wang Y, Zheng X, Yang J L. Kondo screening and spin excitation in few-layer CoPc molecular assembly stacking on Pb (111) surface: A DFT+ HEOM study. J. Chem. Phys., 2016, 145 (15): 154301. doi: 10.1063/1.4964675
    [86]
    Wang X L, Hou D, Zheng X, et al. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study. J. Chem. Phys., 2016, 144 (3): 034101. doi: 10.1063/1.4939843
    [87]
    Schinabeck C, Erpenbeck A, Härtle R, et al. Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems. Phys. Rev. B, 2016, 94 (20): 201407. doi: 10.1103/PhysRevB.94.201407
    [88]
    Schinabeck C, Härtle R, Thoss M. Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems: Reservoir formulation and application to vibrational instabilities. Phys. Rev. B, 2018, 97 (23): 235429. doi: 10.1103/PhysRevB.97.235429
    [89]
    Härtle R, Millis A J. Formation of nonequilibrium steady states in interacting double quantum dots: When coherences dominate the charge distribution. Phys. Rev. B, 2014, 90 (24): 245426. doi: 10.1103/PhysRevB.90.245426
    [90]
    Kaspar C, Thoss M. Efficient steady-state solver for the hierarchical equations of motion approach: Formulation and application to charge transport through nanosystems. J. Phys. Chem. A, 2021, 125 (23): 5190–5200. doi: 10.1021/acs.jpca.1c02863
    [91]
    Bätge J, Ke Y, Kaspar C, et al. Nonequilibrium open quantum systems with multiple bosonic and fermionic environments: A hierarchical equations of motion approach. Phys. Rev. B, 2021, 103 (23): 235413. doi: 10.1103/PhysRevB.103.235413
    [92]
    Strümpfer J, Schulten K. Open quantum dynamics calculations with the hierarchy equations of motion on parallel computers. J. Chem. Theory Comput., 2012, 8 (8): 2808–2816. doi: 10.1021/ct3003833
    [93]
    Yan Y M, Xu M, Li T C, et al. Efficient propagation of the hierarchical equations of motion using the Tucker and hierarchical Tucker tensors. J. Chem. Phys., 2021, 154 (19): 194104. doi: 10.1063/5.0050720
    [94]
    Werner P, Oka T, Eckstein M, et al. Weak-coupling quantum Monte Carlo calculations on the Keldysh contour: Theory and application to the current-voltage characteristics of the Anderson model. Phys. Rev. B, 2010, 81 (3): 035108. doi: 10.1103/PhysRevB.81.035108
    [95]
    Cohen G, Rabani E. Memory effects in nonequilibrium quantum impurity models. Phys. Rev. B, 2011, 84 (7): 075150. doi: 10.1103/PhysRevB.84.075150
    [96]
    Cohen G, Gull E, Reichman D R, et al. Numerically exact long-time magnetization dynamics at the nonequilibrium Kondo crossover of the Anderson impurity model. Phys. Rev. B, 2013, 87 (19): 195108. doi: 10.1103/PhysRevB.87.195108
    [97]
    Erpenbeck A, Hertlein C, Schinabeck C, et al. Extending the hierarchical quantum master equation approach to low temperatures and realistic band structures. J. Chem. Phys., 2018, 149 (6): 064106. doi: 10.1063/1.5041716
    [98]
    Cui L, Zhang H D, Zheng X, et al. Highly efficient and accurate sum-over-poles expansion of Fermi and Bose functions at near zero temperatures: Fano spectrum decomposition scheme. J. Chem. Phys., 2019, 151 (2): 024110. doi: 10.1063/1.5096945
    [99]
    Ikeda T, Scholes G D. Generalization of the hierarchical equations of motion theory for efficient calculations with arbitrary correlation functions. J. Chem. Phys., 2020, 152 (20): 204101. doi: 10.1063/5.0007327
    [100]
    Zhang D C, Ding X, Zhang H D, et al. Adiabatic terminator for fermionic hierarchical equations of motion. Chin. J. Chem. Phys., 2021, 34 (6): 905–914. doi: 10.1063/1674-0068/cjcp2110212
    [101]
    Dunn I S, Tempelaar R, Reichman D R. Removing instabilities in the hierarchical equations of motion: Exact and approximate projection approaches. J. Chem. Phys., 2019, 150 (18): 184109. doi: 10.1063/1.5092616
    [102]
    Hu J, Xu R X, Yan Y J. Communication: Padé spectrum decomposition of Fermi function and Bose function. J. Chem. Phys., 2010, 133 (10): 101106. doi: 10.1063/1.3484491
    [103]
    Hu J, Luo M, Jiang F, et al. Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems. J. Chem. Phys., 2011, 134 (24): 244106. doi: 10.1063/1.3602466
    [104]
    Ye L Z, Zhang H D, Wang Y, et al. Low-frequency logarithmic discretization of the reservoir spectrum for improving the efficiency of hierarchical equations of motion approach. J. Chem. Phys., 2017, 147 (7): 074111. doi: 10.1063/1.4999027
    [105]
    Chen Z H, Wang Y, Zheng X, et al. Universal time-domain Prony fitting decomposition for optimized hierarchical quantum master equations. J. Chem. Phys., 2022, 156: 221102. doi: 10.1063/5.0095961
    [106]
    Hou D, Wang S K, Wang R L, et al. Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov-Bohm interferometers. J. Chem. Phys., 2015, 142 (10): 104112. doi: 10.1063/1.4914514
    [107]
    Zheng X, Xu R X, Xu J, et al. Hierarchical equations of motion for quantum dissipation and quantum transport. Prog. Chem., 2012, 24 (6): 1129–1152.
    [108]
    Croy A, Saalmann U. Partial fraction decomposition of the Fermi function. Phys. Rev. B, 2009, 80 (7): 073102. doi: 10.1103/PhysRevB.80.073102
    [109]
    Zheng X, Jin J S, Welack S, et al. Numerical approach to time-dependent quantum transport and dynamical Kondo transition. J. Chem. Phys., 2009, 130 (16): 164708. doi: 10.1063/1.3123526
    [110]
    Ozaki T. Continued fraction representation of the Fermi-Dirac function for large-scale electronic structure calculations. Phys. Rev. B, 2007, 75 (3): 035123. doi: 10.1103/PhysRevB.75.035123
    [111]
    Ding J J, Wang Y, Zhang H D, et al. Fokker-Planck quantum master equation for mixed quantum-semiclassical dynamics. J. Chem. Phys., 2017, 146 (2): 024104. doi: 10.1063/1.4973610
    [112]
    Zhang H D, Yan Y J. Onsets of hierarchy truncation and self-consistent Born approximation with quantum mechanics prescriptions invariance. J. Chem. Phys., 2015, 143 (21): 214112. doi: 10.1063/1.4936831
    [113]
    Tanimura Y. Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn., 2006, 75 (8): 082001. doi: 10.1143/JPSJ.75.082001
    [114]
    Han L, Zhang H D, Zheng X, et al. On the exact truncation tier of fermionic hierarchical equations of motion. J. Chem. Phys., 2018, 148 (23): 234108. doi: 10.1063/1.5034776
    [115]
    Ye L Z, Hou D, Zheng X, et al. Local temperatures of strongly-correlated quantum dots out of equilibrium. Phys. Rev. B, 2015, 91 (20): 205106. doi: 10.1103/PhysRevB.91.205106
    [116]
    Schinabeck C, Thoss M. Hierarchical quantum master equation approach to current fluctuations in nonequilibrium charge transport through nanosystems. Phys. Rev. B, 2020, 101 (7): 075422. doi: 10.1103/PhysRevB.101.075422
    [117]
    Härtle R, Cohen G, Reichman D R, et al. Transport through an Anderson impurity: Current ringing, nonlinear magnetization, and a direct comparison of continuous-time quantum Monte Carlo and hierarchical quantum master equations. Phys. Rev. B, 2015, 92 (8): 085430. doi: 10.1103/PhysRevB.92.085430
    [118]
    Shi Q, Chen L P, Nan G J, et al. Electron transfer dynamics: Zusman equation versus exact theory. J. Chem. Phys., 2009, 130 (16): 164518. doi: 10.1063/1.3125003
    [119]
    Wang Y, Zheng X, Li B, et al. Understanding the Kondo resonance in the d-CoPc/Au (111) adsorption system. J. Chem. Phys., 2014, 141 (8): 084713. doi: 10.1063/1.4893953
    [120]
    Wang Y, Zheng X, Yang J L. Environment-modulated Kondo phenomena in FePc/Au (111) adsorption systems. Phys. Rev. B, 2016, 93 (12): 125114. doi: 10.1103/PhysRevB.93.125114
    [121]
    Gong H, Wang Y, Zhang H D, et al. Thermodynamic free-energy spectrum theory for open quantum systems. J. Chem. Phys., 2020, 153 (21): 214115. doi: 10.1063/5.0028429
    [122]
    Gong H, Wang Y, Zheng X, et al. Nonequilibrium work distributions in controlled system-bath mixing processes. arXiv: 2203.16367, 2022.
    [123]
    Ding X, Zhang D C, Ye L Z, et al. On the practical truncation tier of fermionic hierarchical equations of motion. J. Chem. Phys., 2022, 157: 224107. doi: 10.1063/5.0130355
    [124]
    Zheng X, Jin J S, Yan Y J. Dynamic Coulomb blockade in single-lead quantum dots. New J. Phys., 2008, 10 (9): 093016. doi: 10.1088/1367-2630/10/9/093016
    [125]
    Tanaka M, Tanimura Y. Multistate electron transfer dynamics in the condensed phase: Exact calculations from the reduced hierarchy equations of motion approach. J. Chem. Phys., 2010, 132 (21): 214502. doi: 10.1063/1.3428674
    [126]
    Cheng Y X, Li Z H, Wei J H, et al. Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes. J. Chem. Phys., 2018, 148 (13): 134111. doi: 10.1063/1.5013038
    [127]
    Rahman H, Kleinekathöfer U. Chebyshev hierarchical equations of motion for systems with arbitrary spectral densities and temperatures. J. Chem. Phys., 2019, 150 (24): 244104. doi: 10.1063/1.5100102
    [128]
    Kreisbeck C, Kramer T. Long-lived electronic coherence in dissipative exciton dynamics of light-harvesting complexes. J. Phys. Chem. Lett., 2012, 3 (19): 2828–2833. doi: 10.1021/jz3012029
    [129]
    Tanimura Y. Reduced hierarchy equations of motion approach with Drude plus Brownian spectral distribution: Probing electron transfer processes by means of two-dimensional correlation spectroscopy. J. Chem. Phys., 2012, 137 (22): 22A550. doi: 10.1063/1.4766931
    [130]
    Cao J A, Ye L Z, He D W, et al. Magnet-free time-resolved magnetic circular dichroism with pulsed vector beams. J. Phys. Chem. Lett., 2022, 13: 11300–11306. doi: 10.1021/acs.jpclett.2c03370
    [131]
    Green D, Humphries B S, Dijkstra A G, et al. Quantifying non-Markovianity in underdamped versus overdamped environments and its effect on spectral lineshape. J. Chem. Phys., 2019, 151 (17): 174112. doi: 10.1063/1.5119300
    [132]
    Dijkstra A G, Tanimura Y. Linear and third- and fifth-order nonlinear spectroscopies of a charge transfer system coupled to an underdamped vibration. J. Chem. Phys., 2015, 142 (21): 212423. doi: 10.1063/1.4917025
    [133]
    Xu J, Zhang H D, Xu R X, et al. Correlated driving and dissipation in two-dimensional spectroscopy. J. Chem. Phys., 2013, 138 (2): 024106. doi: 10.1063/1.4773472
    [134]
    Flindt C, Novotnỳ T, Braggio A, et al. Counting statistics of transport through Coulomb blockade nanostructures: High-order cumulants and non-Markovian effects. Phys. Rev. B, 2010, 82 (15): 155407. doi: 10.1103/PhysRevB.82.155407
    [135]
    Koch J, von Oppen F. Franck-Condon blockade and giant Fano factors in transport through single molecules. Phys. Rev. Lett., 2005, 94 (20): 206804. doi: 10.1103/PhysRevLett.94.206804
    [136]
    Leturcq R, Stampfer C, Inderbitzin K, et al. Franck-Condon blockade in suspended carbon nanotube quantum dots. Nat. Phys., 2009, 5 (5): 327–331. doi: 10.1038/nphys1234
    [137]
    Schinabeck C, Härtle R, Weber H B, et al. Current noise in single-molecule junctions induced by electronic-vibrational coupling. Phys. Rev. B, 2014, 90 (7): 075409. doi: 10.1103/PhysRevB.90.075409
    [138]
    Secker D, Wagner S, Ballmann S, et al. Resonant vibrations, peak broadening, and noise in single molecule contacts: The nature of the first conductance peak. Phys. Rev. Lett., 2011, 106 (13): 136807. doi: 10.1103/PhysRevLett.106.136807
    [139]
    Gao L, Ji W, Hu Y B, et al. Site-specific Kondo effect at ambient temperatures in iron-based molecules. Phys. Rev. Lett., 2007, 99 (10): 106402. doi: 10.1103/PhysRevLett.99.106402
    [140]
    Wang Y, Li X G, Zheng X, et al. Manipulation of spin and magnetic anisotropy in bilayer magnetic molecular junctions. Phys. Chem. Chem. Phys., 2018, 20 (41): 26396–26404. doi: 10.1039/C8CP05759A
    [141]
    Zuo L J, Zhuang Q F, Ye L Z, et al. Unveiling the decisive factor for the sharp transition in the scanning tunneling spectroscopy of a single nickelocene molecule. J. Phys. Chem. Lett., 2022, 13: 11262–11270. doi: 10.1021/acs.jpclett.2c03168
    [142]
    Zhang D C, Zuo L J, Ye L Z, et al. Hierarchical equations of motion approach for accurate characterization of spin excitations in quantum impurity systems. J. Chem. Phys., 2023, 158: 014106. doi: 10.1063/5.0131739
    [143]
    Madhavan V, Chen W, Jamneala T, et al. Local spectroscopy of a Kondo impurity: Co on Au (111). Phys. Rev. B, 2001, 64 (16): 165412. doi: 10.1103/PhysRevB.64.165412
    [144]
    Zhang D C, Zheng X, Di Ventra M. Local temperatures out of equilibrium. Phys. Rep., 2019, 830: 1–66. doi: 10.1016/j.physrep.2019.10.003
    [145]
    Shastry A, Stafford C A. Temperature and voltage measurement in quantum systems far from equilibrium. Phys. Rev. B, 2016, 94 (15): 155433. doi: 10.1103/PhysRevB.94.155433
    [146]
    Engquist H L, Anderson P W. Definition and measurement of the electrical and thermal resistances. Phys. Rev. B, 1981, 24 (2): 1151. doi: 10.1103/PhysRevB.24.1151
    [147]
    Meair J, Bergfield J P, Stafford C A, et al. Local temperature of out-of-equilibrium quantum electron systems. Phys. Rev. B, 2014, 90 (3): 035407. doi: 10.1103/PhysRevB.90.035407
    [148]
    Dubi Y, Di Ventra M. Thermoelectric effects in nanoscale junctions. Nano Lett., 2009, 9 (1): 97–101. doi: 10.1021/nl8025407
    [149]
    Li T C, Yan Y M, Shi Q. A low-temperature quantum Fokker-Planck equation that improves the numerical stability of the hierarchical equations of motion for the Brownian oscillator spectral density. J. Chem. Phys., 2022, 156 (6): 064107. doi: 10.1063/5.0082108
    [150]
    Baumann S, Paul W, Choi T, et al. Electron paramagnetic resonance of individual atoms on a surface. Science, 2015, 350 (6259): 417–420. doi: 10.1126/science.aac8703
    [151]
    Verlhac B, Bachellier N, Garnier L, et al. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science, 2019, 366 (6465): 623–627. doi: 10.1126/science.aax8222
    [152]
    Czap G, Wagner P J, Xue F, et al. Probing and imaging spin interactions with a magnetic single-molecule sensor. Science, 2019, 364 (6441): 670–673. doi: 10.1126/science.aaw7505
    [153]
    Zhang X, Wolf C, Wang Y, et al. Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions. Nat. Chem., 2022, 14 (1): 59–65. doi: 10.1038/s41557-021-00827-7
    [154]
    Loth S, Etzkorn M, Lutz C P, et al. Measurement of fast electron spin relaxation times with atomic resolution. Science, 2010, 329 (5999): 1628–1630. doi: 10.1126/science.1191688
    [155]
    Yang K, Paul W, Phark S H, et al. Coherent spin manipulation of individual atoms on a surface. Science, 2019, 366 (6464): 509–512. doi: 10.1126/science.aay6779
    [156]
    Veldman L M, Farinacci L, Rejali R, et al. Free coherent evolution of a coupled atomic spin system initialized by electron scattering. Science, 2021, 372 (6545): 964–968. doi: 10.1126/science.abg8223

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return