[1] |
Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 1999, 41: 303–332. doi: 10.1137/S0036144598347011
|
[2] |
Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons. Science, 2020, 370: 1460–1463. doi: 10.1126/science.abe8770
|
[3] |
Arrazola J, Bergholm V, Brádler K, et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 2021, 591: 54–60. doi: 10.1038/s41586-021-03202-1
|
[4] |
Zhong H S, Deng Y H, Qin J, et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Physical Review Letters, 2021, 127: 180502. doi: 10.1103/PhysRevLett.127.180502
|
[5] |
Aaronson S, Arkhipov A. The computational complexity of linear optics. In: STOC ’11: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing. San Jose, USA: Association for Computing Machinery, 2011: 333–342.
|
[6] |
Hamilton C S, Kruse R, Sansoni L, et al. Gaussian boson sampling. Physical Review Letters, 2017, 119: 170501. doi: 10.1103/PhysRevLett.119.170501
|
[7] |
Gottesman D. The Heisenberg representation of quantum computers. [2022-03-01]. https://arxiv.org/abs/quant-ph/9807006.
|
[8] |
Braunstein S L, van Loock P. Quantum information with continuous variables. Reviews of Modern Physics, 2005, 77: 513–577. doi: 10.1103/RevModPhys.77.513
|
[9] |
Greenberger D M, Horne M A, Zeilinger A. Going beyond Bell’s theorem. In: Kafatos M editor. Bell’s Theorem, Quantum Theory and Conceptions of the Universe. AG, Switzerland: Springer, 1989: 69–72.
|
[10] |
Hardy L. Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Physical Review Letters, 1992, 68: 2981–2984. doi: 10.1103/PhysRevLett.68.2981
|
[11] |
Leifer M S, Spekkens R W. Pre-and post-selection paradoxes and contextuality in quantum mechanics. Physical Review Letters, 2005, 95: 200405. doi: 10.1103/PhysRevLett.95.200405
|
[12] |
Yu S, Oh C H, Quantum pigeonhole effect, Cheshire cat and contextuality. [2022-03-01]. https://arxiv.org/abs/1408.2477.
|
[13] |
Abramsky S, Barbosa R S, Kishida K,et al. Contextuality, cohomology and paradox. In: Kreutzer S, editor. 24th EACSL Annual Conference on Computer Science Logic (CSL 2015). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015: 211–228.
|
[14] |
Waegell M, Tollaksen J. Contextuality, pigeonholes, Cheshire cats, mean kings, and weak values. Quantum Studies: Mathematics and Foundations, 2018, 5: 325–349. doi: 10.1007/s40509-017-0127-9
|
[15] |
Liu Z H, Pan W W, Xu X Y, et al. Experimental exchange of grins between quantum Cheshire cats. Nature Communications, 2020, 11: 3006. doi: 10.1038/s41467-020-16761-0
|
[16] |
Howard M, Wallman J, Veitch V, et al. Contextuality supplies the “magic” for quantum computation. Nature, 2014, 510: 351–355. doi: 10.1038/nature13460
|
[17] |
Spekkens R W. Negativity and contextuality are equivalent notions of nonclassicality. Physical Review Letters, 2008, 101: 020401. doi: 10.1103/PhysRevLett.101.020401
|
[18] |
Raussendorf R. Contextuality in measurement-based quantum computation. Physical Review A, 2013, 88: 022322. doi: 10.1103/PhysRevA.88.022322
|
[19] |
Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 1935, 47: 777–780. doi: 10.1103/PhysRev.47.777
|
[20] |
Kochen S, Specker S. The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 1967, 17: 59–87.
|
[21] |
Yu S, Oh C H. State-independent proof of Kochen-Specker theorem with 13 rays. Physical Review Letters, 2012, 108: 030402. doi: 10.1103/PhysRevLett.108.030402
|
[22] |
Cabello A, Kleinmann M, Portillo J R. Quantum state-independent contextuality requires 13 rays. Journal of Physics A: Mathematical and Theoretical, 2016, 49: 38LT01. doi: 10.1088/1751-8113/49/38/38LT01
|
[23] |
Huang Y F, Li C F, Zhang Y S, et al. Experimental test of the Kochen-Specker theorem with single photons. Physical Review Letters, 2003, 90: 250401. doi: 10.1103/PhysRevLett.90.250401
|
[24] |
Flamini F, Spagnolo N, Sciarrino F. Photonic quantum information processing: A review. Reports on Progress in Physics, 2018, 82 (1): 016001. doi: 10.1088/1361-6633/aad5b2
|
[25] |
Budroni C, Cabello A, Gühne O, et al. Quantum contextuality. [2022-03-15]. https://doi.org/10.48550/arXiv.2102.13036.
|
[26] |
Thompson J, Kurzyński P, Lee S Y, et al. Recent advances in contextuality tests. Open Systems & Information Dynamics, 2016, 23: 1650009. doi: 10.1142/S1230161216500098
|
[27] |
Cabello A, Severini S, Winter A. Graph-theoretic approach to quantum correlations. Physical Review Letters, 2014, 112: 040401. doi: 10.1103/PhysRevLett.112.040401
|
[28] |
Xu Z P, Yu X D, Kleinmann M. State-independent quantum contextuality with projectors of nonunit rank. New Journal of Physics, 2021, 23: 043025. doi: 10.1088/1367-2630/abe6e3
|
[29] |
Fine A. Hidden variables, joint probability, and the Bell inequalities. Physical Review Letters, 1982, 48: 291. doi: 10.1103/PhysRevLett.48.291
|
[30] |
Cabello A, Estebaranz J M, García-Alcaine G. Bell-Kochen-Specker theorem: A proof with 18 vectors. Physics Letters A, 1996, 212: 183–187. doi: 10.1016/0375-9601(96)00134-X
|
[31] |
Xu Z P, Chen J L, Gühne O. Proof of the Peres conjecture for contextuality. Physical Review Letters, 2020, 124: 230401. doi: 10.1103/PhysRevLett.124.230401
|
[32] |
Uijlen S, Westerbaan B. A Kochen-Specker system has at least 22 vectors. New Generation Computing, 2016, 34: 3–23. doi: 10.1007/s00354-016-0202-5
|
[33] |
Peres A. Two simple proofs of the Kochen-Specker theorem. Journal of Physics A: Mathematical and General, 1991, 24: L175. doi: 10.1088/0305-4470/24/4/003
|
[34] |
Cabello A. Experimentally testable state-independent quantum contextuality. Physical Review Letters, 2008, 101: 210401. doi: 10.1103/PhysRevLett.101.210401
|
[35] |
Lovász L. On the Shannon capacity of a graph. IEEE Transactions on Information Theory, 1979, 25: 1–7. doi: 10.1109/TIT.1979.1055985
|
[36] |
Cabello A. Simple method for experimentally testing any form of quantum contextuality. Physical Review A, 2016, 93: 032102. doi: 10.1103/PhysRevA.93.032102
|
[37] |
Cañas G, Acuña E, Cariñe J, et al. Experimental demonstration of the connection between quantum contextuality and graph theory. Physical Review A, 2016, 94: 012337. doi: 10.1103/PhysRevA.94.012337
|
[38] |
Xiao Y, Xu Z P, Li Q, et al. Experimental observation of quantum state-independent contextuality under no-signaling conditions. Optics Express, 2018, 26: 32. doi: 10.1364/OE.26.000032
|
[39] |
Liu Z H, Meng H X, Xu Z P, et al. Experimental observation of quantum contextuality beyond Bell nonlocality. Physical Review A, 2019, 100: 042118. doi: 10.1103/PhysRevA.100.042118
|
[40] |
Xiao Y, Xu Z P, Li Q, et al. Experimental test of quantum correlations from platonic graphs. Optica, 2018, 5: 718–722. doi: 10.1364/OPTICA.5.000718
|
[41] |
Klyachko A A, Can M A, Binicioglu S, et al. Simple test for hidden variables in spin-1 systems. Physical Review Letters, 2008, 101: 020403. doi: 10.1103/PhysRevLett.101.020403
|
[42] |
Lapkiewicz R, Li P, Schaeff C, et al. Experimental non-classicality of an indivisible quantum system. Nature, 2011, 474: 490–493. doi: 10.1038/nature10119
|
[43] |
Ahrens J, Amselem E, Cabello A, et al. Two fundamental experimental tests of nonclassicality with qutrits. Scientific Reports, 2013, 3: 2170. doi: https://doi.org/10.1038/srep02170
|
[44] |
Jerger M, Reshitnyk Y, Oppliger M, et al. Contextuality without nonlocality in a superconducting quantum system. Nature Communications, 2016, 7: 12930. doi: 10.1038/ncomms12930
|
[45] |
Simon C, Żukowski M, Weinfurter H, et al. Feasible “Kochen-Specker” experiment with single particles. Physical Review Letters, 2000, 85: 1783–1786. doi: 10.1103/PhysRevLett.85.1783
|
[46] |
Amselem E, Bourennane M, Budroni C, et al. Comment on “state-independent experimental test of quantum contextuality in an indivisible system”. Physical Review Letters, 2013, 110: 078901. doi: 10.1103/PhysRevLett.110.078901
|
[47] |
Huang Y F, Li M, Cao D Y, et al. Experimental test of state-independent quantum contextuality of an indivisible quantum system. Physical Review A, 2013, 87: 052133. doi: 10.1103/PhysRevA.87.052133
|
[48] |
Cabello A, Amselem E, Blanchfield K, et al. Proposed experiments of qutrit state-independent contextuality and two-qutrit contextuality-based nonlocality. Physical Review A, 2012, 85: 032108. doi: 10.1103/PhysRevA.85.032108
|
[49] |
Broome M A, Fedrizzi A, Lanyon B P, et al. Discrete single-photon quantum walks with tunable decoherence. Physical Review Letters, 2010, 104: 153602. doi: 10.1103/PhysRevLett.104.153602
|
[50] |
Mermin N D. Hidden variables and the two theorems of John Bell. Reviews of Modern Physics, 1993, 65: 803–815. doi: 10.1103/RevModPhys.65.803
|
[51] |
Amselem E, Radmark M, Bourennane M, et al. State-independent quantum contextuality with single photons. Physical Review Letters, 2009, 103: 160405. doi: 10.1103/PhysRevLett.103.160405
|
[52] |
Wang J, Zhou Y, Wang Z, et al. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nature Communications, 2018, 9: 4106. doi: 10.1038/s41467-018-06605-3
|
[53] |
Zhang A, Xu H, Xie J, et al. Experimental test of contextuality in quantum and classical systems. Physical Review Letters, 2019, 122: 080401. doi: 10.1103/PhysRevLett.122.080401
|
[54] |
Qu D, Wang K, Xiao L, et al. State-independent test of quantum contextuality with either single photons or coherent light. npj Quantum Information, 2021, 7: 1. doi: 10.1038/s41534-020-00339-1
|
[55] |
Allen L, Beijersbergen M W, Spreeuw R, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45: 8185–8189. doi: 10.1103/PhysRevA.45.8185
|
[56] |
Bolduc E, Bent N, Santamato E, et al. Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. Optics Letters, 2013, 38: 3546–3549. doi: 10.1364/OL.38.003546
|
[57] |
Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412: 313–316. doi: 10.1038/35085529
|
[58] |
Bent N, Qassim H, Tahir A, et al. Experimental realization of quantum tomography of photonic qudits via symmetric informationally complete positive operatorvalued measures. Physical Review X, 2015, 5: 041006. doi: 10.1103/PhysRevX.5.041006
|
[59] |
Liu Z D, Sun Y N, Cheng Z D, et al. Experimental test of single-system steering and application to quantum communication. Physical Review A, 2017, 95: 022341. doi: 10.1103/PhysRevA.95.022341
|
[60] |
Sun Y N, Liu Z D, Bowles J, et al. Experimental certification of quantum dimensions and irreducible high-dimensional quantum systems with independent devices. Optica, 2020, 7: 1073. doi: 10.1364/OPTICA.396932
|
[61] |
Yang M, Xiao Y, Liao Y W, et al. Zonal reconstruction of photonic wavefunction via momentum weak measurement. Laser & Photonics Reviews, 2020, 14 (5): 1900251. doi: 10.1002/lpor.201900251
|
[62] |
Zheng Y, Yang M, Liu Z H, et al. Detecting momentum weak value: Shack-Hartmann versus a weak measurement wavefront sensor. Optics Letters, 2021, 46: 5352. doi: 10.1364/OL.439174
|
[63] |
Hao Z Y, Sun K, Wang Y, et al. Demonstrating shareability of multipartite Einstein-Podolsky-Rosen steering. Physical Review Letters, 2022, 128: 120402. doi: 10.1103/PhysRevLett.128.120402
|
[64] |
Ru S, Tang W, Wang Y, et al. Verification of Kochen-Specker-type quantum contextuality with a single photon. Physical Review A, 2022, 105: 012428. doi: 10.1103/PhysRevA.105.012428
|
[65] |
Wang X L, Luo Y H, Huang H L, et al. 18-qubit entanglement with six photons’ three degrees of freedom. Physical Review Letters, 2018, 120: 260502. doi: 10.1103/PhysRevLett.120.260502
|
[66] |
Ru S, Wang Y, An M, et al. Realization of a deterministic quantum Toffoli gate with a single photon. Physical Review A, 2021, 103: 022606. doi: 10.1103/PhysRevA.103.022606
|
[67] |
Greenberger D M, Horne M A, Shimony A, et al. Bell’s theorem without inequalities. American Journal of Physics, 1990, 58: 1131–1143. doi: 10.1119/1.16243
|
[68] |
Brassard G, Broadbent A, Tapp A. Multi-party pseudo-telepathy. In: Dehne F, Sack J R, Smid M, editors. Algorithms and Data Structures (WADS 2003). Berlin, Germany: Springer, 2003: 1–11.
|
[69] |
Abramsky S, Brandenburger A. The sheaf-theoretic structure of nonlocality and contextuality. New Journal of Physics, 2011, 13: 113036. doi: 10.1088/1367-2630/13/11/113036
|
[70] |
Liu Z H, Zhou J, Meng H X, et al. Experimental test of the Greenberger-Horne-Zeilinger-type paradoxes in and beyond graph states. npj Quantum Information, 2021, 7: 66. doi: 10.1038/s41534-021-00397-z
|
[71] |
Cabello A. “All versus nothing” inseparability for two observers. Physical Review Letters, 2001, 87: 010403. doi: 10.1103/PhysRevLett.87.010403
|
[72] |
Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 1993, 70: 1895–1899. doi: 10.1103/PhysRevLett.70.1895
|
[73] |
Kwiat P G, Mattle K, Weinfurter H, et al. New high-intensity source of polarization-entangled photon pairs. Physical Review Letters, 1995, 75: 4337–4341. doi: 10.1103/PhysRevLett.75.4337
|
[74] |
Chen Z B, Pan J W, Zhang Y D, et al. All-versus-nothing violation of local realism for two entangled photons. Physical Review Letters, 2003, 90: 160408. doi: 10.1103/PhysRevLett.90.160408
|
[75] |
Yang T, Zhang Q, Zhang J, et al. All-versus-nothing violation of local realism by two-photon, four-dimensional entanglement. Physical Review Letters, 2005, 95: 240406. doi: 10.1103/PhysRevLett.95.240406
|
[76] |
Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2002.
|
[77] |
Massar S, Pironio S, Roland J, et al. Bell inequalities resistant to detector inefficiency. Physical Review A, 2002, 66: 052112. doi: 10.1103/PhysRevA.66.052112
|
[78] |
Wang P, Zhang J, Luan C Y, et al. Significant loophole-free test of Kochen-Specker contextuality using two species of atomic ions. Science Advances, 2022, 8: eabk1660. doi: 10.1126/sciadv.abk1660
|
[79] |
Shalm L K, Meyer-Scott E, Christensen B G, et al. Strong loophole-free test of local realism. Physical Review Letters, 2015, 115: 250402. doi: 10.1103/PhysRevLett.115.250402
|
[80] |
Giustina M, Versteegh M A,Wengerowsky S, et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Physical Review Letters, 2015, 115: 250401. doi: 10.1103/PhysRevLett.115.250401
|
[81] |
Meyer D A. Finite precision measurement nullifies the Kochen-Specker theorem. Physical Review Letters, 1999, 83: 3751–3754. doi: 10.1103/PhysRevLett.83.3751
|
[82] |
Kent A. Noncontextual hidden variables and physical measurements. Physical Review Letters, 1999, 83: 3755–3757. doi: 10.1103/PhysRevLett.83.3755
|
[83] |
Kirchmair G, Zahringer F, Gerritsma R, et al. State-independent experimental test of quantum contextuality. Nature, 2009, 460: 494–497. doi: 10.1038/nature08172
|
[84] |
Gühne O, Kleinmann M, Cabello A, et al. Compatibility and noncontextuality for sequential measurements. Physical Review A, 2010, 81: 022121. doi: 10.1103/PhysRevA.81.022121
|
[85] |
Szangolies J, Kleinmann M, Gühne O. Tests against noncontextual models with measurement disturbances. Physical Review A, 2013, 87: 050101. doi: 10.1103/PhysRevA.87.050101
|
[86] |
Cabello A, Cunha M T. Proposal of a two-qutrit contextuality test free of the finite precision and compatibility loopholes. Physical Review Letters, 2011, 106: 190401. doi: 10.1103/PhysRevLett.106.190401
|
[87] |
Hu X M, Chen J S, Liu B H, et al. Experimental test of compatibility-loophole-free contextuality with spatially separated entangled qutrits. Physical Review Letters, 2016, 117: 170403. doi: 10.1103/PhysRevLett.117.170403
|
[88] |
Hu X M, Xing W B, Liu B H, et al. Efficient generation of high-dimensional entanglement through multipath down-conversion. Physical Review Letters, 2020, 125: 090503. doi: 10.1103/PhysRevLett.125.090503
|
[89] |
Li L, Liu Z, Ren X, et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 2020, 368: 1487–1490. doi: 10.1126/science.aba9779
|
[90] |
Svozil K. Staging quantum cryptography with chocolate balls. American Journal of Physics, 2006, 74: 800–803. doi: 10.1119/1.2205879
|
[91] |
Cabello A, D’Ambrosio V, Nagali E, et al. Hybrid ququart-encoded quantum cryptography protected by Kochen-Specker contextuality. Physical Review A, 2011, 84: 030302. doi: 10.1103/PhysRevA.84.030302
|
[92] |
Spekkens R W, Buzacott D H, Keehn A J, et al. Preparation contextuality powers parity-oblivious multiplexing. Physical Review Letters, 2009, 102: 010401. doi: 10.1103/PhysRevLett.102.010401
|
[93] |
Saha D, Horodecki P, Pawlowski M. State independent contextuality advances one-way communication. New Journal of Physics, 2019, 21 (9): 093057. doi: 10.1088/1367-2630/ab4149
|
[94] |
Abbott A A, Calude C S, Conder J, et al. Strong Kochen-Specker theorem and incomputability of quantum randomness. Physical Review A, 2012, 86: 062109. doi: 10.1103/PhysRevA.86.062109
|
[95] |
Um M, Zhao Q, Zhang J, et al. Randomness expansion secured by quantum contextuality. Physical Review Applied, 2020, 13: 034077. doi: 10.1103/PhysRevApplied.13.034077
|
[96] |
Bharti K, Ray M, Varvitsiotis A, et al. Robust self-testing of quantum systems via noncontextuality inequalities. Physical Review Letters, 2019, 122: 250403. doi: 10.1103/PhysRevLett.122.250403
|
[97] |
Gühne O, Budroni C, Cabello A, et al. Bounding the quantum dimension with contextuality. Physical Review A, 2014, 89: 062107. doi: 10.1103/PhysRevA.89.062107
|
[98] |
Ray M, Boddu N G, Bharti K, et al. Graph-theoretic approach to dimension witnessing. New Journal of Physics, 2021, 23: 033006. doi: 10.1088/1367-2630/abcacd
|
[99] |
Preskill J. Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79. doi: 10.22331/q-2018-08-06-79
|
[100] |
Shor P W. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 1995, 52: R2493. doi: 10.1103/PhysRevA.52.R2493
|
[101] |
Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computation. Reviews of Modern Physics, 2008, 80: 1083. doi: 10.1103/RevModPhys.80.1083
|
[102] |
Bravyi S, Kitaev A Y. Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A, 2005, 71: 022316. doi: 10.1103/PhysRevA.71.022316
|
[103] |
Veitch V, Mousavian S H, Gottesman D, et al. The resource theory of stabilizer quantum computation. New Journal of Physics, 2014, 16: 013009. doi: 10.1088/1367-2630/16/1/013009
|
[104] |
Kitaev A Y. Fault-tolerant quantum computation by anyons. Annals of Physics, 2003, 303: 2–30. doi: 10.1016/S0003-4916(02)00018-0
|
[105] |
Bartolomei H, Kumar M, Bisognin R, et al. Fractional statistics in anyon collisions. Science, 2020, 368: 173–177. doi: 10.1126/science.aaz5601
|
[106] |
Nakamura J, Liang S, Gardner G, et al. Direct observation of anyonic braiding statistics. Nature Physics, 2020, 16: 931–936. doi: 10.1038/s41567-020-1019-1
|
[107] |
Liu Z H, Sun K, Pachos J K, et al. Topological contextuality and anyonic statistics of photonic-encoded parafermions. PRX Quantum, 2021, 2: 030323. doi: 10.1103/PRXQuantum.2.030323
|
[108] |
Aspuru-Guzik A, Walther P. Photonic quantum simulators. Nature Physics, 2012, 8: 285–291. doi: 10.1038/nphys2253
|
[109] |
Georgescu I M, Ashhab S, Nori F. Quantum simulation. Reviews of Modern Physics, 2014, 86: 153–185. doi: 10.1103/RevModPhys.86.153
|
[110] |
Fradkin E, Kadanoff L P. Disorder variables and para-fermions in two-dimensional statistical mechanics. Nuclear Physics B, 1980, 170: 1. doi: 10.1016/0550-3213(80)90472-1
|
[111] |
Bargmann V. Note on Wigner’s theorem on symmetry operations. Journal of Mathematical Physics, 1964, 5: 862. doi: 10.1063/1.1704188
|
[112] |
Xu J S, Sun K, Han Y J, et al. Simulating the exchange of Majorana zero modes with a photonic system. Nature Communications, 2016, 7: 13194. doi: 10.1038/ncomms13194
|
[113] |
Tang J S, Wang Y T, Yu S, et al. Experimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system. Nature Photonics, 2016, 10: 642–646. doi: 10.1038/nphoton.2016.144
|
[114] |
Wang Y T, Li Z P, Yu S, et al. Experimental investigation of state distinguishability in parity-time symmetric quantum dynamics. Physical Review Letters, 2020, 124: 230402. doi: 10.1103/PhysRevLett.124.230402
|
[115] |
Yu S, Meng Y, Tang J S, et al. Experimental investigation of quantum PT-enhanced sensor. Physical Review Letters, 2020, 125: 240506. doi: 10.1103/PhysRevLett.125.240506
|
[116] |
Li Q, Zhang C J, Cheng Z D, et al. Experimental simulation of anti-parity-time symmetric lorentz dynamics. Optica, 2019, 6: 67–71. doi: 10.1364/OPTICA.6.000067
|
[117] |
Xu J S, Yung M H, Xu X Y, et al. Demon-like algorithmic quantum cooling and its realization with quantum optics. Nature Photonics, 2014, 8: 113–118. doi: 10.1038/nphoton.2013.354
|
[118] |
Chuang I L, Nielsen M A. Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics, 1997, 44: 2455–2467. doi: 10.1080/09500349708231894
|
[119] |
O’Brien J L, Pryde G, Gilchrist A, et al. Quantum process tomography of a controlled-not gate. Physical Review Letters, 2004, 93: 080502. doi: 10.1103/PhysRevLett.93.080502
|
[120] |
Cabello A. Bell non-locality and Kochen-Specker contextuality: How are they connected? Foundations of Physics, 2021, 51: 1. doi: 10.1007/s10701-021-00404-5
|
[121] |
Cabello A. Converting contextuality into nonlocality. Physical Review Letters, 2021, 127: 070401. doi: 10.1103/PhysRevLett.127.070401
|
[122] |
Clauser J F, Horne M A, Shimony A, et al. Proposed experiment to test local hidden-variable theories. Physical Review Letters, 1969, 23: 880–884. doi: 10.1103/PhysRevLett.23.880
|
[123] |
Kurzyński P, Cabello A, Kaszlikowski D. Fundamental monogamy relation between contextuality and nonlocality. Physical Review Letters, 2014, 112: 100401. doi: 10.1103/PhysRevLett.112.100401
|
[124] |
Zhan X, Zhang X, Li J, et al. Realization of the contextuality-nonlocality tradeoff with a qubit-qutrit photon pair. Physical Review Letters, 2016, 116: 090401. doi: 10.1103/PhysRevLett.116.090401
|
[125] |
Cabello A. Proposal for revealing quantum nonlocality via local contextuality. Physical Review Letters, 2010, 104: 220401. doi: 10.1103/PhysRevLett.104.220401
|
[126] |
Liu B H, Hu X M, Chen J S, et al. Nonlocality from local contextuality. Physical Review Letters, 2016, 117: 220402. doi: 10.1103/PhysRevLett.117.220402
|
[127] |
Hu X M, Liu B H, Chen J S, et al. Simultaneous observation of quantum contextuality and quantum nonlocality. Science Bulletin, 2018, 63: 1092–1095. doi: 10.1016/j.scib.2018.06.018
|
[128] |
Amselem E, Danielsen L E, Lopez-Tarrida A J, et al. Experimental fully contextual correlations. Physical Review Letters, 2012, 108: 200405. doi: 10.1103/PhysRevLett.108.200405
|
[129] |
D’Ambrosio V, Herbauts I, Amselem E, et al. Experimental implementation of a Kochen-Specker set of quantum tests. Physical Review X, 2013, 3: 011012. doi: 10.1103/PhysRevX.3.011012
|
[130] |
Qu D, Kurzyński P, Kaszlikowski D, et al. Experimental entropic test of state-independent contextuality via single photons. Physical Review A, 2020, 101: 060101. doi: 10.1103/PhysRevA.101.060101
|
[131] |
Frustaglia D, Baltanás J P, Velázquez-Ahumada M C, et al. Classical physics and the bounds of quantum correlations. Physical Review Letters, 2016, 116: 250404. doi: 10.1103/PhysRevLett.116.250404
|
[132] |
Liu B, Huang Y, Gong Y, et al. Experimental demonstration of quantum contextuality with nonentangled photons. Physical Review A, 2009, 80: 044101. doi: 10.1103/PhysRevA.80.044101
|
[133] |
Cabello A. Proposed test of macroscopic quantum contextuality. Physical Review A, 2010, 82: 032110. doi: 10.1103/PhysRevA.82.032110
|
[134] |
Vidick T, Wehner S. Does ignorance of the whole imply ignorance of the parts? Large violations of noncontextuality in quantum theory. Physical Review Letters, 2011, 107: 030402. doi: 10.1103/PhysRevLett.107.030402
|
[135] |
Amaral B, Cunha M T, Cabello A. Quantum theory allows for absolute maximal contextuality. Physical Review A, 2015, 92: 062125. doi: 10.1103/PhysRevA.92.062125
|
[136] |
Mermin N D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Physical Review Letters, 1990, 65: 1838. doi: 10.1103/PhysRevLett.65.1838
|
[137] |
Ardehali M. Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Physical Review A, 1992, 46: 5375–5378. doi: 10.1103/PhysRevA.46.5375
|
[138] |
Belinskiĭ A, Klyshko D N. Interference of light and Bell’s theorem. Physics-Uspekhi, 1993, 36: 653. doi: 10.1070/pu1993v036n08abeh002299
|
[139] |
Cavalcanti E G. Classical causal models for Bell and Kochen-Specker inequality violations require fine-tuning. Physical Review X, 2018, 8: 021018. doi: 10.1103/PhysRevX.8.021018
|
[140] |
Pearl J, Cavalcanti E. Classical causal models cannot faithfully explain Bell nonlocality or Kochen-Specker contextuality in arbitrary scenarios. Quantum, 2021, 5: 518. doi: 10.22331/q-2021-08-05-518
|
[141] |
Hu X M, Xie Y, Arora A S, et al. Self-testing of a single quantum system: Theory and experiment. [2022-03-01]. https://arxiv.org/abs/2203.09003v1.
|
[142] |
Xu J S, Sun K, Pachos J K, et al. Photonic implementation of Majorana-based Berry phases. Science Advances, 2018, 4: eaat6533. doi: 10.1126/sciadv.aat6533
|
[143] |
Liu C, Huang H L, Chen C, et al. Demonstration of topologically path-independent anyonic braiding in a nine-qubit planar code. Optica, 2019, 6: 264–268. doi: 10.1364/OPTICA.6.000264
|
[144] |
Huang H L, Narożniak M, Liang F, et al. Emulating quantum teleportation of a Majorana zero mode qubit. Physical Review Letters, 2021, 126: 090502. doi: 10.1103/PhysRevLett.126.090502
|
[145] |
Kirby W M, Tranter A, Love P J. Contextual subspace variational quantum eigensolver. Quantum, 2021, 5: 456. doi: 10.22331/q-2021-05-14-456
|
[146] |
Widmann M, Lee S Y, Rendler T, et al. Coherent control of single spins in silicon carbide at room temperature. Nature Materials, 2015, 14: 164–168. doi: 10.1038/nmat4145
|
[147] |
Wang J F, Yan F F, Li Q, et al. Coherent control of nitrogen-vacancy center spins in silicon carbide at room temperature. Physical Review Letters, 2020, 124: 223601. doi: 10.1103/PhysRevLett.124.223601
|
[148] |
Wang J F, Yan F F, Li Q, et al. Robust coherent control of solid-state spin qubits using anti-Stokes excitation. Nature Communications, 2021, 12: 3223. doi: 10.1038/s41467-021-23471-8
|
[149] |
Xu Z P, Saha D, Su H Y, et al. Reformulating noncontextuality inequalities in an operational approach. Physical Review A, 2016, 94: 062103. doi: 10.1103/PhysRevA.94.062103
|
[150] |
Leifer M, Duarte C. Noncontextuality inequalities from antidistinguishability. Physical Review A, 2020, 101: 062113. doi: 10.1103/PhysRevA.101.062113
|
[151] |
Lovász L, Saks M, Schrijver A. Orthogonal representations and connectivity of graphs. Linear Algebra and Its Applications, 1989, 114: 439–454. doi: 10.1016/0024-3795(89)90475-8
|
Figure
1.
The Yu-Oh 13-ray appearing in the state-independent proof of contextuality by Yu and Oh[21]. Left: the geometric representation of the rays in a unit cube. The rays are defined as
Figure 2. Contextuality from a Platonic graph. (a) A regular icosahedron is a Platonic solid with 12 vertices and 20 edges. (b) The icosahedron graph (vertices 1–12) is the skeleton of the icosahedron. With the auxiliary vertices 13–16 every vertex belongs to a 4-clique, and the graph’s complement graph has a Lovász orthogonal representation[151] in dimension 4. (c) The violation of the noncontextuality inequality dual to the icosahedron graph decreases with the linear entropy of a quantum state characterizing the mixedness of the state. Figure taken from Ref. [40].
Figure 3. First experimental test of contextuality at USTC. Main: experimental setup. A heralded single photon’s path and polarization degrees of freedom encode two qubits. The half-wave plates and polarizing beam splitters inside the two Mach-Zehnder interferometers conducted the first joint path-polarization measurement and that after the interferometers executed the second joint measurement. HWP half-wave plate and PBS polarizing beam splitter. Inset: Experimental result showing event probabilities in accord with the predictions of the noncontextual hidden-variable and quantum theories. Figure adapted from Ref. [23].