ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Physics 10 June 2022

Coherent photoproduction processes in hadronic heavy-ion collisions

Cite this:
https://doi.org/10.52396/JUSTC-2021-0210
More Information
  • Author Bio:

    Jiaxuan Luo is currently a graduate student under the tutelage of Assoc. Prof. Wangmei Zha at the University of Science and Technology of China. His research interests focus on particle physics and nuclear physics

    Wangmei Zha is an Associate Professor at the University of Science and Technology of China (USTC). He received the Ph.D. degree from the USTC in 2014. From then to 2016, he conducted postdoctoral research at the USTC. He joined the USTC in 2016. He is primarily engaged in the data analysis of relativistic heavy-ion collisions and the construction, maintenance, calibration, and software development of the muon detector. His research results have been published in Physical Review Letter, Physical Letter B, Journal of High Energy Physics, Chinese Physics C, Physical Review D, and other academic journals

  • Corresponding author: E-mail: first@ustc.edu.cn
  • Received Date: 24 September 2021
  • Accepted Date: 20 April 2022
  • Available Online: 10 June 2022
  • Recently, significant abnormal enhancements in J/ψ and dilepton production have been observed in peripheral heavy-ion collisions at very low transverse momentum by the STAR, ALICE and ATLAS Collaborations. The observed excesses cannot be explained by hadronic production combined with the cold and hot medium effects, though it can be well described by coherent photoproduction calculations with nuclear overlap. These experimental and theoretical results provide evidence of coherent photoproduction in hadronic heavy-ion collisions, which suggest novel probes for detecting the properties of quark-gluon plasma (QGP). In this work, we review recent experimental and theoretical progress regarding coherent photoproduction in hadronic heavy-ion collisions.
    Photoproduction processes in relativistic heavy-ion collisions.
    Recently, significant abnormal enhancements in J/ψ and dilepton production have been observed in peripheral heavy-ion collisions at very low transverse momentum by the STAR, ALICE and ATLAS Collaborations. The observed excesses cannot be explained by hadronic production combined with the cold and hot medium effects, though it can be well described by coherent photoproduction calculations with nuclear overlap. These experimental and theoretical results provide evidence of coherent photoproduction in hadronic heavy-ion collisions, which suggest novel probes for detecting the properties of quark-gluon plasma (QGP). In this work, we review recent experimental and theoretical progress regarding coherent photoproduction in hadronic heavy-ion collisions.
    • We review and summarize the recent experimental and theoretical progresses on the coherent photoproduction of J/ψ and dilepton in hadronic heavy-ion collisions.
    • According to the calculations of the phenomenological model, the excesses of J/ψ and dilepton production at very low transverse momentum in hadronic heavy-ion collisions may result from the photoproduction processes.
    • J/ψ and dilepton, originating from the coherent photoproduction process in relativistic heavy-ion collisions, may serve as new novel probes to study the evolution of quark-gluon plasma and to determine electromagnetic properties of QGP.

  • loading
  • [1]
    Braun-Munzinger P, Stachel J. The quest for the quark-gluon plasma. Nature, 2007, 448: 302–309. doi: 10.1038/nature06080
    [2]
    Matsui T, Satz H. J/ψ suppression by quark-gluon plasma formation. Physics Letters B, 1986, 178 (4): 416–422. doi: 10.1016/0370-2693(86)91404-8
    [3]
    Yan L, Zhuang P F, Xu N. J/ψ production in quark-gluon plasma. Physical Review Letters, 2006, 97: 232301. doi: 10.1103/PhysRevLett.97.232301
    [4]
    Ferreiro E G, Fleuret F, Lansberg J P, et al. Cold nuclear matter effects on J/ψ production: Intrinsic and extrinsic transverse momentum effects. Physics Letters B, 2009, 680 (1): 50–55. doi: 10.1016/j.physletb.2009.07.076
    [5]
    Adamczyk L, Adkins J K, Agakishiev G, et al. (STAR Collaboration). Energy dependence of J/ψ production in Au+Au collisions at $ \sqrt{{s}_{NN}} $ =39, 62.4 and 200 GeV. Physics Letters B, 2017, 771: 13–20. doi: 10.1016/j.physletb.2017.04.078
    [6]
    van Hees H, Rapp R. Dilepton radiation at the CERN super-proton synchrotron. Nuclear Physics A, 2008, 806: 339–387. doi: 10.1016/j.nuclphysa.2008.03.009
    [7]
    Rapp R. Dilepton spectroscopy of QCD matter at collider energies. Advances in High Energy Physics, 2013, 2013: 148253. doi: 10.1155/2013/148253
    [8]
    Krauss F, Greiner M, Soff G. Photon and gluon induced processes in relativistic heavy-ion collisions. Progress in Particle and Nuclear Physics, 1997, 39: 503–564. doi: 10.1016/S0146-6410(97)00049-5
    [9]
    Fermi E. Über die Theorie des Stoßes zwischen Atomen und elektrisch geladenen Teilchen. Zeitschrift für Physik, 1924, 29: 315–327. doi: 10.1007/BF03184853
    [10]
    Weizsäcker C F V. Ausstrahlung bei Stößen sehr schneller Elektronen. Zeitschrift für Physik, 1934, 88: 612–625. doi: 10.1007/BF01333110
    [11]
    Adler C, Ahammed Z, Allgower C, et al. (STAR Collaboration). Coherent $ {\rho }^{0} $ production in ultraperipheral heavy-ion collisions. Physical Review Letters, 2002, 89: 272302. doi: 10.1103/PhysRevLett.89.272302
    [12]
    Adam J, et al. (ALICE Collaboration). Measurement of an excess in the yield of J/ψ at very low $ {p}_{T} $ in Pb–Pb collisions at $ \sqrt{{s}_{NN}} $ =2.76 TeV. Physical Review Letters, 2016, 116: 222301. doi: 10.1103/PhysRevLett.116.222301
    [13]
    Adam J, Adamczyk L, Adams J R, et al. (STAR Collaboration). Observation of excess J/ψ yield at very low transverse momenta in Au+Au collisions at $ \sqrt{{s}_{NN}} $ =200 GeV and U+U collisions at $ \sqrt{{s}_{NN}} $ =193 GeV. Physical Review Letters, 2019, 123: 132302. doi: 10.1103/PhysRevLett.123.132302
    [14]
    Adam J, Adamczyk L, Adams J R, et al. (STAR Collaboration). Low- $ {p}_{T} $ $ {e}^{+}{e}^{-} $ pair production in Au+Au collisions at $ \sqrt{{s}_{NN}} $ =200 GeV and U+U collisions at $ \sqrt{{s}_{NN}} $ =193 GeV at STAR. Physical Review Letters, 2018, 121: 132301. doi: 10.1103/PhysRevLett.121.132301
    [15]
    Aaboud M, Aad G, Abbott B, et al. (ATLAS Collaboration). Observation of centrality-dependent acoplanarity for muon pairs produced via two-photon scattering in Pb+Pb collisions at $ \sqrt{{s}_{NN}} $ =5.02 TeV with the ATLAS detector. Physical Review Letters, 2018, 121: 212301. doi: 10.1103/PhysRevLett.121.212301
    [16]
    Guzey V, Zhalov M. Exclusive J/ψ production in ultraperipheral collisions at the LHC: Constraints on the gluon distributions in the proton and nuclei. Journal of High Energy Physics, 2013, 2013: 207. doi: 10.1007/JHEP10(2013)207
    [17]
    The ALICE Collaboration, Aamodt K, Quintana A A, et al. (ALICE Collaboration). The ALICE experiment at the CERN LHC. Journal of Instrumentation, 2008, 3: S08002. doi: https://doi.org/10.1088/1748-0221/3/08/s08002
    [18]
    Abelev B, Abramyan A, Adam J, et al. (ALICE Collaboration). Performance of the ALICE experiment at the CERN LHC. International Journal of Modern Physics A, 2014, 29: 1430044. doi: https://doi.org/10.1142/S0217751X14300440
    [19]
    Klein S R, Nystrand J, Seger J, et al. STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions. Computer Physics Communications, 2017, 212: 258–268. doi: 10.1016/j.cpc.2016.10.016
    [20]
    Liu Y P, Qu Z, Xu N, et al. J/ψ transverse momentum distribution in high energy nuclear collisions. Physics Letters B, 2009, 678 (1): 72–76. doi: https://doi.org/10.1016/j.physletb.2009.06.006
    [21]
    Zhao X B, Rapp R. Charmonium in medium: From correlators to experiment. Physical Review C, 2010, 82: 064905. doi: https://doi.org/10.1103/PhysRevC.82.064905
    [22]
    Abelev B, et al. (ALICE Collaboration). Coherent J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at $ \sqrt{{s}_{NN}} $ =2.76 TeV. Physics Letters B, 2013, 718: 1273–1283. doi: 10.1016/j.physletb.2012.11.059
    [23]
    Shi W, Zha W, Chen B Y. Charmonium coherent photoproduction and hadroproduction with effects of quark gluon plasma. Physics Letters B, 2018, 777: 399–405. doi: 10.1016/j.physletb.2017.12.055
    [24]
    Miller M L, Reygers K, Sanders S J, et al. Glauber modeling in high-energy nuclear collisions. Annual Review of Nuclear and Particle Science, 2007, 57: 205–243. doi: doi:10.1146/annurev.nucl.57.090506.123020
    [25]
    Tanabashi M, et al. (Particle Data Group). Review of particle physics. Physical Review D, 2018, 98: 030001. doi: 10.1103/PhysRevD.98.030001
    [26]
    Bertulani C A, Klein S R, Nystrand J. Physics of ultra-peripheral nuclear collisions. Annual Review of Nuclear and Particle Science, 2005, 55: 271–310. doi: 10.1146/annurev.nucl.55.090704.151526
    [27]
    Zha W, Huang B C, Ma R R, et al. Systematic study of the experimental measurements on J/ψ cross sections and kinematic distributions in p+p collisions at different energies. Physical Review C, 2016, 93: 024919. doi: 10.1103/PhysRevC.93.024919
    [28]
    Zha W M, Klein S R, Ma R, et al. Coherent J/ψ photoproduction in hadronic heavy-ion collisions. Physical Review C, 2018, 97: 044910. doi: 10.1103/PhysRevC.97.044910
    [29]
    Bauer T H, Spital R D, Yennie D R, et al. The hadronic properties of the photon in high-energy interactions. Review of Modern Physics, 1978, 50: 261. doi: 10.1103/RevModPhys.50.261
    [30]
    Zha W, Ruan L, Tang Z, et al. Coherent photo-produced J/ψ and dielectron yields in isobaric collisions. Physics Letters B, 2019, 789: 238–242. doi: 10.1016/j.physletb.2018.12.041
    [31]
    Jönsson C. Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Zeitschrift für Physik, 1961, 161(4): 454–474. doi: 10.1007/BF01342460
    [32]
    Zeilinger A, Gähler R, C. G. Shull, et al. Single- and double-slit diffraction of neutrons. Review of Modern Physics, 1988, 60: 1067. doi: https://doi.org/10.1103/RevModPhys.60.1067
    [33]
    Carnal O, Mlynek J. Young’s double-slit experiment with atoms: A simple atom interferometer. Physical Review Letters, 1991, 66: 2689. doi: 10.1103/PhysRevLett.66.2689
    [34]
    Arndt M, Nairz O, Vos-Andreae J, et al. Wave–particle duality of C60 molecules. Nature, 1999, 401: 680–682. doi: 10.1038/44348
    [35]
    Hackermüller L, Uttenthaler S, Hornberger K, et al. Wave nature of biomolecules and fluorofullerenes. Physical Review Letters, 2003, 91: 090408. doi: 10.1103/PhysRevLett.91.090408
    [36]
    Zha W, Ruan L, Tang Z, et al. Double-slit experiment at Fermi scale: Coherent photoproduction in heavy-ion collisions. Physical Review C, 2019, 99: 061901. doi: 10.1103/PhysRevC.99.061901
    [37]
    Barrett R C, Jackson D F. Nuclear Sizes and Structure. Oxford, UK: Oxford University Press, 1977.
    [38]
    Matsui T, Satz H. J/ψ suppression by quark-gluon plasma formation. Physics Letters B, 1986, 178 (4): 416–422. doi: 10.1016/0370-2693(86)91404-8
    [39]
    Chen B Y. Detailed rapidity dependence of J/ψ production at energies available at the Large Hadron Collider. Physical Review C, 2016, 93: 054905. doi: 10.1103/PhysRevC.93.054905
    [40]
    Zha W, Ruan L, Tang Z, et al. Coherent lepton pair production in hadronic heavy ion collisions. Physics Letters B, 2018, 781: 182–186. doi: 10.1016/j.physletb.2018.04.006
    [41]
    Inghirami G, Del Zanna L, Beraudo A, et al. Numerical magneto-hydrodynamics for relativistic nuclear collisions. The European Physical Journal C, 2016, 76 (12): 659. doi: 10.1140/epjc/s10052-016-4516-8
    [42]
    Asakawa M, Majumder A, Muller B. Electric charge separation in strong transient magnetic fields. Physical Review C, 2010, 81: 064912. doi: 10.1103/PhysRevC.81.064912
    [43]
    Kharzeev D E, Warringa H J. Chiral magnetic conductivity. Physical Review D, 2009, 80: 034028. doi: 10.1103/PhysRevD.80.034028
    [44]
    The ATLAS Collaboration1, Aad G, Abat E, et al. (ATLAS Collaboration). The ATLAS experiment at the CERN Large Hadron Collider. Journal of Instrumentation, 2008, 3: S08003. doi: 10.1088/1748-0221/3/08/s08003
    [45]
    ATLAS Collaboration, Aad G, Abbott B, et al. (ATLAS Collaboration). Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data. The European Physical Journal C, 2014, 74: 3130. doi: 10.1140/epjc/s10052-014-3130-x
    [46]
    ATLAS Collaboration, Aad G, Abbott B, et al. (ATLAS Collaboration). Muon reconstruction performance of the ATLAS detector in proton–proton collision data at $ \sqrt{{s}} $ =13 TeV. The European Physical Journal C, 2016, 76: 292. doi: 10.1140/epjc/s10052-016-4120-y
    [47]
    Zha W, Brandenburg J D, Tang Z, et al. Initial transverse-momentum broadening of Breit-Wheeler process in relativistic heavy-ion collisions. Physics Letters B, 2020, 800: 135089. doi: 10.1016/j.physletb.2019.135089
    [48]
    Vidović M, Greiner M, Best C, et al. Impact-parameter dependence of the electromagnetic particle production in ultrarelativistic heavy-ion collisions. Physical Review C, 1993, 47: 2308. doi: 10.1103/PhysRevC.47.2308
    [49]
    Hencken K, Trautmann D, Baur G. Impact-parameter dependence of the total probability for electromagnetic electron-positron pair production in relativistic heavy-ion collisions. Physical Review A, 1995, 51: 1874. doi: 10.1103/PhysRevA.51.1874
    [50]
    Alscher A, Hencken K, Trautmann D, et al. Multiple electromagnetic electron-positron pair production in relativistic heavy-ion collisions. Physical Review A, 1997, 55: 396. doi: 10.1103/PhysRevA.55.396
    [51]
    Adams J, Aggarwal M M, Ahammed Z, et al. (STAR Collaboration). Production of $ {e}^{+}{e}^{-} $ pairs accompanied by nuclear dissociation in ultraperipheral heavy-ion collisions. Physical Review C, 2004, 70: 031902. doi: 10.1103/PhysRevC.70.031902
    [52]
    Abelev B, et al. (ALICE Collaboration). J/ψ suppression at forward rapidity in Pb-Pb collisions at $ \sqrt{{s}_{NN}} $ = 2.76 TeV. Physical Review Letters, 2012, 109: 072301. doi: 10.1103/PhysRevLett.109.072301
    [53]
    Abelev B I, et al. (STAR Collaboration). $ {\rho }^{0} $ photoproduction in ultraperipheral relativistic heavy ion collisions at $ \sqrt{{s}_{NN}} $ =200 GeV. Physical Review C, 2008, 77: 034910. doi: 10.1103/PhysRevC.77.034910
    [54]
    PHENIX Collaboration, S.Afanasiev S, Aidalag C, et al. (PHENIX Collaboration). Photoproduction of J/ψ and of high mass $ {e}^{+}{e}^{-} $ in ultra-peripheral Au+Au collisions at $ \sqrt{{s}_{NN}} $ =200 GeV. Physics Letters B, 2009, 679 (4): 321–329. doi: 10.1016/j.physletb.2009.07.061
    [55]
    The ALICE Collaboration, Abbas E, Abelev B, et al. (ALICE Collaboration). Charmonium and $ {e}^{+}{e}^{-} $ pair photoproduction at mid-rapidity in ultra-peripheral Pb–Pb collisions at $ \sqrt{{s}_{NN}} $ =2.76 TeV. The European Physical Journal C, 2013, 73: 2617. doi: 10.1140/epjc/s10052-013-2617-1
    [56]
    Khachatryan V, Sirunyan A M, Tumasyan A, et al. (CMS Collaboration). Coherent J/ψ photoproduction in ultra-peripheral Pb-Pb collisions at $ \sqrt{{s}_{NN}} $ =2.76 TeV with the CMS experiment. Physics Letters B, 2017, 772: 489–511. doi: 10.1016/j.physletb.2017.07.001
    [57]
    Abelevbv B, Adamal J, Adamová D, et al. (ALICE Collaboration). Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb-Pb collisions at $ \sqrt{{s}_{NN}} $ = 2.76 TeV. Physics Letters B, 2014, 734: 314–327. doi: 10.1016/j.physletb.2014.05.064
    [58]
    Klein S R. Two-photon production of dilepton pairs in peripheral heavy ion collisions. Physical Review C, 2018, 97: 054903. doi: 10.1103/PhysRevC.97.054903
  • 加载中

Catalog

    Figure  1.  Raw OS dimuon $ {p}_{T} $ distribution for invariant mass range 2.8 GeV/$ {c}^{2} $ < $ {m}_{{\mu }^{+}{\mu }^{-}} $ < 3.4 GeV/$ {c}^{2} $ in 70%–90% Pb + Pb collisions at $\sqrt{{s}_\rm{NN}}$ = 2.76 TeV. Vertical error bars denote statistical uncertainties. Figure taken from Ref. [12].

    Figure  2.  J/ψ ${R}_{{\rm AA}}$ as a function of ${N}_{{\rm part}}$ for three $ {p}_{T} $ intervals in Pb + Pb collisions at $\sqrt{{s}_{{\rm NN}}}$= 2.76 TeV. Figure taken from Ref. [12].

    Figure  3.  J/ψ inclusive nuclear modification factor as a function of the number of participants ${N}_{\rm{part}}$ for $ {p}_{T} $ < 0.3 GeV/c in 2.76 TeV Pb + Pb collisions at forward rapidity 2.5 < y < 4. Figure taken from Ref. [23].

    Figure  4.  J/ψ inclusive nuclear modification factor as a function of the number of participants ${N}_{\rm{part}}$ in 0.3 < $ {p}_{T} $ < 1 and 1 < $ {p}_{T} $ < 8 GeV/c in forward rapidity 2.5 < y < 4 at LHC 2.76 TeV Pb + Pb collisions. Figure taken from Ref. [23].

    Figure  5.  J/ψ invariant yields for Au + Au collisions at $\displaystyle\sqrt{{s}_{\rm NN}}$ = 200 GeV and U + U collisions at $\sqrt{{s}_{{\rm NN}}}$ = 193 GeV as a function of $ {p}_{T} $ for different centralities. The error bars depict the statistical errors and the boxes denote the systematic uncertainties. Figure taken from Ref. [13].

    Figure  6.  J/ψ ${R}_{{\rm AA}}$ as a function $ {p}_{T} $ in Au + Au collisions at $\sqrt{{s}_{{\rm NN}}}$ = 200 GeV and U + U collisions at $\sqrt{{s}_{{\rm NN}}}$ = 193 GeV. Figure taken from Ref. [13].

    Figure  7.  The $ {p}_{T} $-integrated J/ψ yields ($ {p}_{T} $ < 0.1 GeV/c) with expected hadronic contribution subtracted as a function of ${N}_{\rm{part}}$ for 30%–80% Au + Au collisions and 40%–80% U + U collisions. Lines denote the model calculations for coherent photoproduction in four coupling scenarios. Figure taken from Ref. [13].

    Figure  8.  Coherent J/ψ production yields as a function of ${N}_{\rm{part}}$ at $\sqrt{{s}_{{\rm NN}}}$ = 200 GeV in Au + Au, Ru + Ru, and Zr + Zr collisions. Figure taken from Ref. [30].

    Figure  9.  Amplitude and momentum distribution patterns of coherent J/ψ photoproduction in different scenarios for b = 10 fm in Au + Au collisions at $\sqrt{{s}_{{\rm NN}}}$ = 200 GeV at midrapidity (y = 0). Figure taken from Ref. [36].

    Figure  10.  Amplitude and momentum distribution patterns of coherent J/ψ photoproduction at midrapidity (y = 0) in Au + Au collisions at $\sqrt{{s}_{{\rm NN}}}$ = 200 GeV with a disruptive effect from the overlap region for different impact parameters. Figure taken from Ref. [36].

    Figure  11.  Schematic diagram for different charmonium production mechanisms at different transverse momentum regions in semi-central nucleus–nucleus collisions in the presence of both QGP and strong transverse electromagnetic fields. Photoproduction, regeneration, and initial production dominate the J/ψ final yields in extremely low $ {p}_{T} $, low and middle $ {p}_{T} $, and high $ {p}_{T} $ regions, respectively. Figure taken from Ref. [23].

    Figure  12.  Charmonium hadroproduction and photoproduction as a function of the number of participants ${N}_{\rm{part}}$ at forward rapidity 2.5 < y < 4 in $\sqrt{{s}_\rm{NN}}$ = 2.76 TeV Pb + Pb collisions in the extremely low transverse momentum region $ {p}_{T} $ < 0.3 GeV/c. $ {B}_{{e}^{+}{e}^{-}} $ is the branch ratio of J/ψ$ \to {e}^{+}{e}^{-} $. Figure taken from Ref. [23].

    Figure  13.  Charmonium prompt nuclear modification factor as a function of transverse momentum for impact parameter b = 10.2 fm in the forward rapidity 2.5 < y < 4 in LHC 2.76 TeV Pb + Pb collisions. Figure taken from Ref. [23].

    Figure  14.  (a) Centrality dependence of $ {e}^{+}{e}^{-} $ invariant mass spectra within the STAR acceptance from Au +Au and U + U collisions for pair $ {p}_{T} $ < 0.15 GeV/c. (b) Corresponding ratios of data over cocktail. Figure taken from Ref. [14].

    Figure  15.  $ {e}^{+}{e}^{-} $ pair $ {p}_{T} $ distributions within the STAR acceptance for different mass regions in 60%–80% Au + Au and U + U collisions with respect to the cocktail. Figure taken from Ref. [14].

    Figure  16.  Centrality dependence of integrated excess yields in the mass regions 0.4–0.76,0.76–1.2,1.2–2.6 GeV/$ {c}^{2} $ in Au + Au and U + U collisions. The centrality dependence of the hadronic cocktail yields in the mass region 0.76–1.2 GeV/$ {c}^{2} $ is also shown for comparison. Figure taken from Ref. [14].

    Figure  17.  (a)–(c) Distributions of excess yields within the STAR acceptance for the different mass regions in 60%–80% Au + Au and U + U collisions. (d) Corresponding $ \sqrt{ < {p}_{T}^{2} > } $ of excess yields. Figure taken from Ref. [14].

    Figure  18.  Background-subtracted distributions for α (upper row) and A (lower row) in Pb + Pb collisions at $\sqrt{{s}_{{\rm NN}}}$ = 5.02 TeV for different centrality classes. Each distribution is normalized to unity over its measured range. Figure taken from Ref. [15].

    Figure  19.  Results of fits to the muon pair α distributions using the sum of Gaussian and background functions. A standard Gaussian function is shown as a solid curve whilst the dotted curve shows a Gaussian function in α convolved with the measured ${p}_{T{\rm avg}}$ distribution. Figure taken from Ref. [15].

    Figure  20.  ${k}_{T}^\rm{rms}$ values obtained from the fits shown in Fig. 19, expressed as a function of <${N}_{\rm{part}}$>. Figure taken from Ref. [15].

    Figure  21.  Differential pair mass spectrum ${\rm {d}}^{2}N/\left({\rm d}M{\rm d}y\right)$ for (a) electron and (b) muon pairs with gold beams at RHIC and for (c) electron and (d) muon pairs with lead beams at LHC. The different curves in the figure indicate the results for different centrality classes. Figure taken from Ref. [40].

    Figure  22.  Mass spectrum of electron pairs for different centrality classes. The mass distributions are compared to hadronic cocktail simulations without the ρ contribution in-medium ρ mass spectrum and QGP thermal radiation. Figure taken from Ref. [40].

    Figure  23.  Invariant mass spectrum of $ {e}^{+}{e}^{-} $ pair from coherent photon–photon interaction and decay of coherently produced J/ψ in Au + Au collisions for 60%–80% centrality class as well as Ru + Ru and Zr + Zr collisions for 47%–75% centrality class. Figure taken from Ref. [30].

    Figure  24.  $ {p}_{T}^{2} $ distributions of electron–positron pair production within the STAR acceptance for three different mass regions in 60%–80% Au + Au collisions at $\sqrt{{s}_\rm{NN}}$ = 200 GeV. Figure taken from Ref. [47].

    Figure  25.  $ \sqrt{ < {p}_{T}^{2} > } $ of electron–positron pairs within the STAR acceptance as a function of the impact parameter b for different mass regions in Au + Au collisions at $\sqrt{{s}_{{\rm NN}}}$ = 200 GeV. Figure taken from Ref. [47].

    Figure  26.  Distributions of the broadening variable α obtained from the gEPA1, gEPA2, and QED approaches for muon pairs in Pb + Pb collisions at $\sqrt{{s}_{{\rm NN}}}$ = 5.02 TeV in different centrality classes. Figure taken from Ref. [47].

    [1]
    Braun-Munzinger P, Stachel J. The quest for the quark-gluon plasma. Nature, 2007, 448: 302–309. doi: 10.1038/nature06080
    [2]
    Matsui T, Satz H. J/ψ suppression by quark-gluon plasma formation. Physics Letters B, 1986, 178 (4): 416–422. doi: 10.1016/0370-2693(86)91404-8
    [3]
    Yan L, Zhuang P F, Xu N. J/ψ production in quark-gluon plasma. Physical Review Letters, 2006, 97: 232301. doi: 10.1103/PhysRevLett.97.232301
    [4]
    Ferreiro E G, Fleuret F, Lansberg J P, et al. Cold nuclear matter effects on J/ψ production: Intrinsic and extrinsic transverse momentum effects. Physics Letters B, 2009, 680 (1): 50–55. doi: 10.1016/j.physletb.2009.07.076
    [5]
    Adamczyk L, Adkins J K, Agakishiev G, et al. (STAR Collaboration). Energy dependence of J/ψ production in Au+Au collisions at $ \sqrt{{s}_{NN}} $ =39, 62.4 and 200 GeV. Physics Letters B, 2017, 771: 13–20. doi: 10.1016/j.physletb.2017.04.078
    [6]
    van Hees H, Rapp R. Dilepton radiation at the CERN super-proton synchrotron. Nuclear Physics A, 2008, 806: 339–387. doi: 10.1016/j.nuclphysa.2008.03.009
    [7]
    Rapp R. Dilepton spectroscopy of QCD matter at collider energies. Advances in High Energy Physics, 2013, 2013: 148253. doi: 10.1155/2013/148253
    [8]
    Krauss F, Greiner M, Soff G. Photon and gluon induced processes in relativistic heavy-ion collisions. Progress in Particle and Nuclear Physics, 1997, 39: 503–564. doi: 10.1016/S0146-6410(97)00049-5
    [9]
    Fermi E. Über die Theorie des Stoßes zwischen Atomen und elektrisch geladenen Teilchen. Zeitschrift für Physik, 1924, 29: 315–327. doi: 10.1007/BF03184853
    [10]
    Weizsäcker C F V. Ausstrahlung bei Stößen sehr schneller Elektronen. Zeitschrift für Physik, 1934, 88: 612–625. doi: 10.1007/BF01333110
    [11]
    Adler C, Ahammed Z, Allgower C, et al. (STAR Collaboration). Coherent $ {\rho }^{0} $ production in ultraperipheral heavy-ion collisions. Physical Review Letters, 2002, 89: 272302. doi: 10.1103/PhysRevLett.89.272302
    [12]
    Adam J, et al. (ALICE Collaboration). Measurement of an excess in the yield of J/ψ at very low $ {p}_{T} $ in Pb–Pb collisions at $ \sqrt{{s}_{NN}} $ =2.76 TeV. Physical Review Letters, 2016, 116: 222301. doi: 10.1103/PhysRevLett.116.222301
    [13]
    Adam J, Adamczyk L, Adams J R, et al. (STAR Collaboration). Observation of excess J/ψ yield at very low transverse momenta in Au+Au collisions at $ \sqrt{{s}_{NN}} $ =200 GeV and U+U collisions at $ \sqrt{{s}_{NN}} $ =193 GeV. Physical Review Letters, 2019, 123: 132302. doi: 10.1103/PhysRevLett.123.132302
    [14]
    Adam J, Adamczyk L, Adams J R, et al. (STAR Collaboration). Low- $ {p}_{T} $ $ {e}^{+}{e}^{-} $ pair production in Au+Au collisions at $ \sqrt{{s}_{NN}} $ =200 GeV and U+U collisions at $ \sqrt{{s}_{NN}} $ =193 GeV at STAR. Physical Review Letters, 2018, 121: 132301. doi: 10.1103/PhysRevLett.121.132301
    [15]
    Aaboud M, Aad G, Abbott B, et al. (ATLAS Collaboration). Observation of centrality-dependent acoplanarity for muon pairs produced via two-photon scattering in Pb+Pb collisions at $ \sqrt{{s}_{NN}} $ =5.02 TeV with the ATLAS detector. Physical Review Letters, 2018, 121: 212301. doi: 10.1103/PhysRevLett.121.212301
    [16]
    Guzey V, Zhalov M. Exclusive J/ψ production in ultraperipheral collisions at the LHC: Constraints on the gluon distributions in the proton and nuclei. Journal of High Energy Physics, 2013, 2013: 207. doi: 10.1007/JHEP10(2013)207
    [17]
    The ALICE Collaboration, Aamodt K, Quintana A A, et al. (ALICE Collaboration). The ALICE experiment at the CERN LHC. Journal of Instrumentation, 2008, 3: S08002. doi: https://doi.org/10.1088/1748-0221/3/08/s08002
    [18]
    Abelev B, Abramyan A, Adam J, et al. (ALICE Collaboration). Performance of the ALICE experiment at the CERN LHC. International Journal of Modern Physics A, 2014, 29: 1430044. doi: https://doi.org/10.1142/S0217751X14300440
    [19]
    Klein S R, Nystrand J, Seger J, et al. STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions. Computer Physics Communications, 2017, 212: 258–268. doi: 10.1016/j.cpc.2016.10.016
    [20]
    Liu Y P, Qu Z, Xu N, et al. J/ψ transverse momentum distribution in high energy nuclear collisions. Physics Letters B, 2009, 678 (1): 72–76. doi: https://doi.org/10.1016/j.physletb.2009.06.006
    [21]
    Zhao X B, Rapp R. Charmonium in medium: From correlators to experiment. Physical Review C, 2010, 82: 064905. doi: https://doi.org/10.1103/PhysRevC.82.064905
    [22]
    Abelev B, et al. (ALICE Collaboration). Coherent J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at $ \sqrt{{s}_{NN}} $ =2.76 TeV. Physics Letters B, 2013, 718: 1273–1283. doi: 10.1016/j.physletb.2012.11.059
    [23]
    Shi W, Zha W, Chen B Y. Charmonium coherent photoproduction and hadroproduction with effects of quark gluon plasma. Physics Letters B, 2018, 777: 399–405. doi: 10.1016/j.physletb.2017.12.055
    [24]