ISSN 0253-2778

CN 34-1054/N

open
Open AccessOpen Access JUSTC Research Articles

The generating fields of two twisted Kloosterman sums

Cite this: JUSTC, 2021, 51(12): 879-888
https://doi.org/10.52396/JUST-2021-0077
More Information
  • Received Date: March 16, 2021
  • Revised Date: May 17, 2021
  • Published Date: December 30, 2021
  • The generating fields of the twisted Kloosterman sums Kl (q, a, χ) and the partial Gauss sums g(q, a, χ) are studied.We require that the characteristic p is large with respect to the order d of the character χ and the trace of the coefficient a is nonzero.When p≡±1 mod d,we can characterize the generating fields of these character sums.For general p,when a lies in the prime field,we propose a combinatorial condition on (p, d) to ensure one can determine the generating fields.

Catalog

    {{if article.pdfAccess}}
    {{if article.articleBusiness.pdfLink && article.articleBusiness.pdfLink != ''}} {{else}} {{/if}}PDF
    {{/if}}
    XML
    [1]
    Davenport H, Hasse H. Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen. J. Reine Angew. Math., 1935, 172: 151-182.
    [2]
    Wan D. Algebraic theory of exponential sums over finite fields. https://www.math.uci.edu/~dwan/Wan_HIT_2019.pdf.
    [3]
    Zhang S. The degrees of exponential sums of binomials. https://arxiv.org/abs/2010.08342.
    [4]
    Wan D, Yin H. Algebraic degree periodicity in recurrence sequences. https://arxiv.org/abs/2009.14382.
    [5]
    Bombieri E. On exponential sums in finite fields. II. Invent. Math., 1978, 47: 29-39.
    [6]
    Wan D. Minimal polynomials and distinctness of Kloosterman sums. Finite Fields and Their Applications, 1995, 1: 189-203.
    [7]
    Fisher B. Distinctness of Kloosterman sums. In: p-Adic Methods in Number Theory and Algebraic Geometry. Providence, RI: Amer. Math. Soc., 1992.
    [8]
    Kononen K, Rinta-aho M, Väänänen K. On the degree of a Kloosterman sum as an algebraic integer. https://arxiv.org/abs/1107.0188.
    [9]
    Katz N M. Gauss Sums, Kloosterman Sums, and Monodromy Groups. Princeton, NJ: Princeton University Press, 1988.
    [10]
    Stickelberger L. Ueber eine Verallgemeinerung der Kreistheilung. Math. Ann., 1890, 37(3): 321-367.
    [11]
    Washington L C. Introduction to Cyclotomic Fields. New York: Springer-Verlag, 1982.

    Article Metrics

    Article views (307) PDF downloads (2770)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return